
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

5.1.2
Algorithm for converting NFA to DFA
FLNAME:5.1.2.0

14 / 42

Recall I
Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of all states that q
can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ: δ∗(q, a) = εreach
(⋃

p∈εreach(q)

δ(p, a)
)

if w = ax : δ∗(q,w) = εreach
(⋃

p∈εreach(q)

⋃

r∈δ∗(p,a)

δ∗(r , x)
)

15 / 42

Recall II
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

16 / 42

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA D = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)

A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

17 / 42

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA D = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)

A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

17 / 42

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA D = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)

A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

17 / 42

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA D = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)

A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

17 / 42

Incremental construction

Only build states reachable from s ′ = εreach(s) the start state of D

q0 q3

q1 ε

q2

 1

 0

 ε
{q0, q1}

{q2,q3}

{}

 0, 1

{q3}

 0, 1

 1

0

 0, 1

δ′(X , a) = ∪q∈Xδ
∗(q, a).

18 / 42

An optimization: Incremental algorithm

Build D beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and calculate the state
U = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a transition.

To compute Zq,a = δ∗(q, a) - set of all states reached from q on character a
I Compute X1 = εreach(q)
I Compute Y1 = ∪p∈X1δ(p, a)
I Compute Zq,a = εreach(Y) = ∪r∈Y1εreach(r)

If U is a new state add it to reachable states that need to be explored.

19 / 42

An optimization: Incremental algorithm

Build D beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and calculate the state
U = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a transition.

To compute Zq,a = δ∗(q, a) - set of all states reached from q on character a
I Compute X1 = εreach(q)
I Compute Y1 = ∪p∈X1δ(p, a)
I Compute Zq,a = εreach(Y) = ∪r∈Y1εreach(r)

If U is a new state add it to reachable states that need to be explored.

19 / 42

An optimization: Incremental algorithm

Build D beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and calculate the state
U = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a transition.

To compute Zq,a = δ∗(q, a) - set of all states reached from q on character a
I Compute X1 = εreach(q)
I Compute Y1 = ∪p∈X1δ(p, a)
I Compute Zq,a = εreach(Y) = ∪r∈Y1εreach(r)

If U is a new state add it to reachable states that need to be explored.

19 / 42

THE END
...

(for now)

20 / 42

