Algorithms & Models of Computation CS/ECE 374, Spring 2019

NFAs continued, Closure Properties of Regular Languages

Lecture 5 Tuesday, January 29, 2019

LATEXed: December 27, 2018 08:25

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (trivial)
- NFAs accept regular expressions (we saw already)
- DFAs accept languages accepted by NFAs (today)
- Regular expressions for languages accepted by DFAs (later in the course)

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (trivial)
- NFAs accept regular expressions (we saw already)
- DFAs accept languages accepted by NFAs (today)
- Regular expressions for languages accepted by DFAs (later in the course)

Part I

Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem

For every NFA N there is a DFA M such that L(M) = L(N).

Formal Tuple Notation for NFA

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\epsilon\}$ is a subset of Q — a set of states.

Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$ $\delta^*(q, a) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$
- if w = xa, $\delta^*(q, w) = \bigcup_{p \in \delta^*(q, x)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

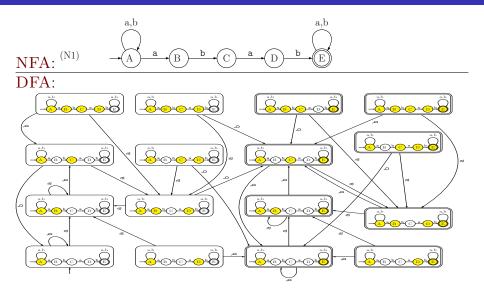
Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

Simulating NFA

Example the first revisited



Example: DFA from NFA



NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $\bullet \ A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- \bullet $A' = \{X \subset Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{g \in X} \delta^*(g, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $\bullet \ A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

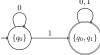
- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $\bullet \ A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Example

No ϵ -transitions

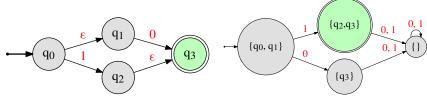
Example

No ϵ -transitions



Incremental construction

Only build states reachable from $s' = \epsilon \operatorname{reach}(s)$ the start state of M



$$\delta'(X,a) = \cup_{q \in X} \delta^*(q,a)$$

Incremental algorithm

- Build M beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $Y = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.
- If Y is a new state add it to reachable states that need to explored.

To compute $\delta^*(q,a)$ - set of all states reached from q on string a

- Compute $X = \epsilon \operatorname{reach}(q)$
- Compute $Y = \cup_{p \in X} \delta(p, a)$
- Compute $Z = \epsilon \operatorname{reach}(Y) = \bigcup_{r \in Y} \epsilon \operatorname{reach}(r)$

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(M).

Stronger claim:

Lemma

For every string
$$w$$
, $\delta_N^*(s,w) = \delta_M^*(s',w)$

Proof by induction on |w|.

Base case:
$$w = \epsilon$$
.
 $\delta_N^*(s, \epsilon) = \epsilon \operatorname{reach}(s)$.
 $\delta_M^*(s', \epsilon) = s' = \epsilon \operatorname{reach}(s)$ by definition of

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(M).

Stronger claim:

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Proof by induction on |w|.

Base case: $w = \epsilon$.

$$\delta_N^*(s,\epsilon) = \epsilon \operatorname{reach}(s).$$

 $\delta_M^*(s',\epsilon) = s' = \epsilon \operatorname{reach}(s)$ by definition of s'.

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step:
$$w = xa$$
 (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s,x) = \delta_M^*(s,x)$

Thus
$$\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$$
 by definition of δ_M .

Therefore

$$\delta_N^*(s,xa) = \delta_M(Y,a) = \delta_M(\delta_M^*(s,x),a) = \delta_M^*(s',xa)$$
 which is what we need

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s,x) = \delta_M^*(s,x)$

Thus
$$\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$$
 by definition of δ_M .

Therefore

$$\delta_N^*(s,xa) = \delta_M(Y,a) = \delta_M(\delta_M^*(s,x),a) = \delta_M^*(s',xa)$$
 which is what we need.

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_M^*(s, x)$

Thus $\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$ by definition of δ_M .

Therefore

 $\delta_N^*(s,xa) = \delta_M(Y,a) = \delta_M(\delta_M^*(s,x),a) = \delta_M^*(s',xa)$ which is what we need.

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_M^*(s, x)$

Thus $\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$ by definition of δ_M .

Therefore

$$\delta_N^*(s,xa) = \delta_M(Y,a) = \delta_M(\delta_M^*(s,x),a) = \delta_M^*(s',xa)$$
 which is what we need.

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_M^*(s, x)$

Thus $\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$ by definition of δ_M .

Therefore, $\delta_N^*(s,xa) = \delta_M(Y,a) = \delta_M(\delta_M^*(s,x),a) = \delta_M^*(s',xa)$ which is what we need.

Part II

Closure Properties of Regular Languages

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

```
Let M = (Q, \Sigma, \delta, s, A) be a DFA that recognizes L X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} Y = \{q \in Q \mid q \text{ can reach some state in } A\} Z = X \cap Y Create new DFA M' = (Q, \Sigma, \delta, s, Z) Claim: L(M') = \mathsf{PREFIX}(L).
```

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

```
Let M = (Q, \Sigma, \delta, s, A) be a DFA that recognizes L X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} Y = \{q \in Q \mid q \text{ can reach some state in } A\} Z = X \cap Y Create new DFA M' = (Q, \Sigma, \delta, s, Z) Claim: L(M') = \mathsf{PREFIX}(L).
```

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

```
Let M = (Q, \Sigma, \delta, s, A) be a DFA that recognizes L X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} Y = \{q \in Q \mid q \text{ can reach some state in } A\} Z = X \cap Y Create new DFA M' = (Q, \Sigma, \delta, s, Z) Claim: L(M') = \mathsf{PREFIX}(L).
```

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \mathbf{\Sigma}^*\}$$

Theorem

```
Let M = (Q, \Sigma, \delta, s, A) be a DFA that recognizes L X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} Y = \{q \in Q \mid q \text{ can reach some state in } A\} Z = X \cap Y Create new DFA M' = (Q, \Sigma, \delta, s, Z) Claim: L(M') = \mathsf{PREFIX}(L).
```

Example: PREFIX

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

If L is regular then PREFIX(L) is regular.

```
Let M = (Q, \Sigma, \delta, s, A) be a DFA that recognizes L X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} Y = \{q \in Q \mid q \text{ can reach some state in } A\} Z = X \cap Y Create new DFA M' = (Q, \Sigma, \delta, s, Z) Claim: L(M') = \mathsf{PREFIX}(L).
```

Example: PREFIX

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

If L is regular then PREFIX(L) is regular.

```
Let M = (Q, \Sigma, \delta, s, A) be a DFA that recognizes L X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} Y = \{q \in Q \mid q \text{ can reach some state in } A\} Z = X \cap Y Create new DFA M' = (Q, \Sigma, \delta, s, Z) Claim: L(M') = PREFIX(L).
```

Example: PREFIX

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

 $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

 $Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: L(M') = PREFIX(L).

Exercise: SUFFIX

Let L be a language over Σ .

Definition

$$\mathsf{SUFFIX}(L) = \{ w \mid xw \in L, x \in \mathbf{\Sigma}^* \}$$

Prove the following:

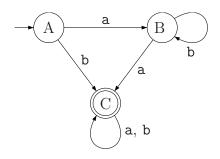
Theorem

If L is regular then PREFIX(L) is regular.

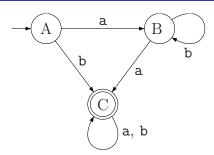
Part III

Regex to NFA

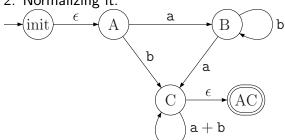
Stage 0: Input



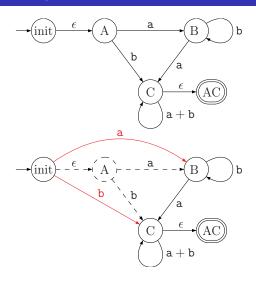
Stage 1: Normalizing



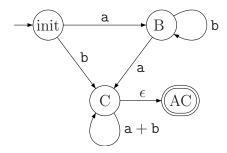
2: Normalizing it.



Stage 2: Remove state A

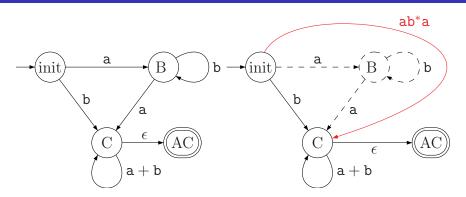


Stage 4: Redrawn without old edges

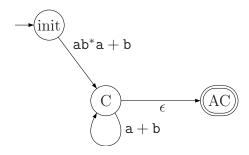


26

Stage 4: Removing B

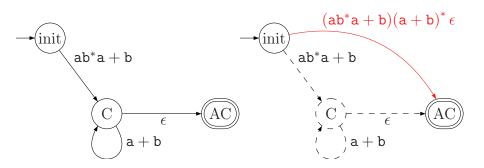


Stage 5: Redraw



28

Stage 6: Removing C

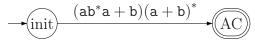


Stage 7: Redraw

$$- \underbrace{(\mathrm{init})^{-} (\mathrm{a} \mathrm{b}^* \mathrm{a} + \mathrm{b}) (\mathrm{a} + \mathrm{b})^*}_{} + \underbrace{\mathrm{AC}}_{}$$

30

Stage 8: Extract regular expression



Thus, this automata is equivalent to the regular expression $(ab^*a + b)(a + b)^*$.