Algorithms & Models of Computation

CS/ECE 374, Spring 2019

Context Free Languages and Grammars

Lecture 7 Tuesday, February 5, 2019

LATEXed: December 27, 2018 08:25

What stack got to do with it?

What's a stack but a second hand memory?

- DFA/NFA/Regular expressions.
 = constant memory computation.
- 2 Turing machines $\frac{DFA}{NFA}$ + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

What's a stack but a second hand memory?

- DFA/NFA/Regular expressions.
 = constant memory computation.
- Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

What's a stack but a second hand memory?

- DFA/NFA/Regular expressions.≡ constant memory computation.
- NFA + stack≡ context free grammars (CFG).
- Turing machines DFA/NFA + unbounded memory.
 - \equiv a standard computer/program.
 - \equiv NFA with two stacks.

Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Generative model giving structure
- . . .

Programming Languages

```
<relational-expression> ::= <shift-expression>
                           <relational-expression> < <shift-expression>
                           <relational-expression> > <shift-expression>
                           <relational-expression> <= <shift-expression>
                           <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                      <shift-expression> << <additive-expression>
                      <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                         <additive-expression> + <multiplicative-expression>
                         <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                               <multiplicative-expression> * <cast-expression>
                               <multiplicative-expression> / <cast-expression>
                               <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                   ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                      ++ <unary-expression>
                      -- <unary-expression>
                      <unary-operator> <cast-expression>
                      sizeof <unary-expression>
                      sizeof <type-name>
<postfix-expression> ::= <primary-expression>
                        <postfix-expression> [ <expression> ]
                        <postfix-expression> ( {<assignment-expression>}* )
                        <postfix-expression> . <identifier>
                        <postfix-expression> ++
                        <postfix-expression> --
```

Natural Language Processing

English sentences can be described as

```
 \begin{split} \langle S \rangle &\rightarrow \langle NP \rangle \langle VP \rangle \\ \langle NP \rangle &\rightarrow \langle CN \rangle \mid \langle CN \rangle \langle PP \rangle \\ \langle VP \rangle &\rightarrow \langle CV \rangle \mid \langle CV \rangle \langle PP \rangle \\ \langle PP \rangle &\rightarrow \langle P \rangle \langle CN \rangle \\ \langle CN \rangle &\rightarrow \langle 4 \rangle \langle N \rangle \\ \langle CV \rangle &\rightarrow \langle V \rangle \mid \langle V \rangle \langle NP \rangle \\ \langle 4 \rangle &\rightarrow a \mid \text{the} \\ \langle N \rangle &\rightarrow \text{boy} \mid \text{girl} \mid \text{flower} \\ \langle V \rangle &\rightarrow \text{touches} \mid \text{likes} \mid \text{sees} \\ \langle P \rangle &\rightarrow \text{with} \end{split}
```

English Sentences Examples

5

Models of Growth

- *L*-systems
- http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Definition

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = ($$
 Variables, Terminals, Productions, Start var $)$

Definition

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = ($$
 Variables, Terminals, Productions, Start var $)$

Definition

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = ($$
 Variables, Terminals, Productions, Start var $)$

Definition

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = ($$
 Variables, Terminals, Productions, Start var $)$

- $V = \{S\}$
- $T = \{a, b\}$
- $P = \{S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow aSa, S \rightarrow bSb)$

What strings can **S** generate like this?

- $V = \{S\}$
- $T = \{a, b\}$
- $P = \{S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow aSa, S \rightarrow bSb)$

What strings can **S** generate like this?

- $V = \{S\}$
- $T = \{a, b\}$
- $P = \{S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow aSa, S \rightarrow bSb)$

What strings can S generate like this?

Example formally...

- $V = \{S\}$
- $T = \{a, b\}$
- $P = \{S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow aSa, S \rightarrow bSb)$

$$G = \left(\{S\}, \quad \{a,b\}, \quad \left\{ egin{array}{c} S
ightarrow \epsilon, \ S
ightarrow a, \ S
ightarrow b \ S
ightarrow a S a \ S
ightarrow b S b \end{array}
ight\} \quad S \quad
ight)$$

Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net

$$L = \{0^n 1^n \mid n \geq 0\}$$

$$S
ightarrow \epsilon \mid 0S1$$

$$L = \{0^n 1^n \mid n \geq 0\}$$

$$\mathcal{S}
ightarrow \epsilon \mid 0 \mathcal{S} 1$$

Notation and Convention

Let G = (V, T, P, S) then

- a, b, c, d, \ldots , in T (terminals)
- A, B, C, D, \ldots , in V (non-terminals)
- u, v, w, x, y, ... in T^* for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^*$
- \bullet X, Y, X in $V \cup T$

"Derives" relation

Formalism for how strings are derived/generated

Definition

Let G = (V, T, P, S) be a CFG. For strings $\alpha_1, \alpha_2 \in (V \cup T)^*$ we say α_1 derives α_2 denoted by $\alpha_1 \leadsto_G \alpha_2$ if there exist strings β, γ, δ in $(V \cup T)^*$ such that

- $\alpha_1 = \beta A \delta$
- $\alpha_2 = \beta \gamma \delta$
- $A \rightarrow \gamma$ is in P.

Examples: $S \rightsquigarrow \epsilon$, $S \rightsquigarrow 0S1$, $0S1 \rightsquigarrow 00S11$, $0S1 \rightsquigarrow 01$.

14

"Derives" relation continued

Definition

For integer $k \geq 0$, $\alpha_1 \rightsquigarrow^k \alpha_2$ inductive defined:

- $\bullet \ \alpha_1 \leadsto^0 \alpha_2 \text{ if } \alpha_1 = \alpha_2$
- \bullet $\alpha_1 \rightsquigarrow^k \alpha_2$ if $\alpha_1 \rightsquigarrow \beta_1$ and $\beta_1 \rightsquigarrow^{k-1} \alpha_2$.
- ullet Alternative definition: $lpha_1 \leadsto^k lpha_2$ if $lpha_1 \leadsto^{k-1} eta_1$ and $eta_1 \leadsto lpha_2$

√* is the reflexive and transitive closure of √→.

 $\alpha_1 \rightsquigarrow^* \alpha_2$ if $\alpha_1 \rightsquigarrow^k \alpha_2$ for some k.

Examples: $S \rightsquigarrow^* \epsilon$, $0S1 \rightsquigarrow^* 0000011111$.

"Derives" relation continued

Definition

For integer $k \geq 0$, $\alpha_1 \rightsquigarrow^k \alpha_2$ inductive defined:

- \bullet $\alpha_1 \leadsto^0 \alpha_2$ if $\alpha_1 = \alpha_2$
- ullet $\alpha_1 \leadsto^k \alpha_2$ if $\alpha_1 \leadsto \beta_1$ and $\beta_1 \leadsto^{k-1} \alpha_2$.
- ullet Alternative definition: $lpha_1 \leadsto^k lpha_2$ if $lpha_1 \leadsto^{k-1} eta_1$ and $eta_1 \leadsto lpha_2$

√* is the reflexive and transitive closure of √→.

 $\alpha_1 \rightsquigarrow^* \alpha_2$ if $\alpha_1 \rightsquigarrow^k \alpha_2$ for some k.

Examples: $S \rightsquigarrow^* \epsilon$, $0S1 \rightsquigarrow^* 0000011111$.

"Derives" relation continued

Definition

For integer $k \geq 0$, $\alpha_1 \rightsquigarrow^k \alpha_2$ inductive defined:

- \bullet $\alpha_1 \leadsto^0 \alpha_2$ if $\alpha_1 = \alpha_2$
- \bullet $\alpha_1 \rightsquigarrow^k \alpha_2$ if $\alpha_1 \rightsquigarrow \beta_1$ and $\beta_1 \rightsquigarrow^{k-1} \alpha_2$.
- ullet Alternative definition: $lpha_1 \leadsto^k lpha_2$ if $lpha_1 \leadsto^{k-1} eta_1$ and $eta_1 \leadsto lpha_2$

√* is the reflexive and transitive closure of √→.

 $\alpha_1 \rightsquigarrow^* \alpha_2$ if $\alpha_1 \rightsquigarrow^k \alpha_2$ for some k.

Examples: $S \rightsquigarrow^* \epsilon$, $0S1 \rightsquigarrow^* 0000011111$.

Context Free Languages

Definition

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where $L(G) = \{w \in T^* \mid S \rightsquigarrow^* w\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that L = L(G).

Context Free Languages

Definition

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where $L(G) = \{w \in T^* \mid S \rightsquigarrow^* w\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that L = L(G).

$$L = \{0^n 1^n \mid n \ge 0\}$$

$$S
ightarrow \epsilon \mid 0S1$$

$$L = \{0^n 1^m \mid m > n\}$$

$$L = \{w \in \{(,)\}^* \mid w \text{ is properly nested string of parenthesis}\}$$

 $G_1 = (V_1, T, P_1, S_1)$ and $G_2 = (V_2, T, P_2, S_2)$ Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1, L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Theorem

CFLs are closed under Kleene star.

If **L** is a CFL \implies **L*** is a CFL.

$$G_1 = (V_1, T, P_1, S_1)$$
 and $G_2 = (V_2, T, P_2, S_2)$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Theorem

CFLs are closed under Kleene star.

If L is a CFL \Longrightarrow L* is a CFL.

Union

$$G_1 = (V_1, T, P_1, S_1)$$
 and $G_2 = (V_2, T, P_2, S_2)$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared.

Theorem

CFLs are closed under union. L_1, L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Concatenation

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

20

Stardom (i.e, Kleene star)

Theorem

CFLs are closed under Kleene star.

If L is a CFL \implies L* is a CFL.

Exercise

- Prove that every regular language is context-free using previous closure properties.
- ullet Prove the set of regular expressions over an alphabet $oldsymbol{\Sigma}$ forms a non-regular language which is context-free.

Closure Properties of CFLs continued

Theorem

CFLs are not closed under complement or intersection.

Theorem

If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.

Canonical non- CFL

Theorem

 $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Proof based on pumping lemma for CFLs. Technical and outside the scope of this class.

Parse Trees or Derivation Trees

A tree to represent the derivation $S \rightsquigarrow^* w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Parse Trees or Derivation Trees

A tree to represent the derivation $S \rightsquigarrow^* w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Example

Ambiguity in CFLs

Definition |

A CFG G is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then G is unambiguous.

Example: $S \rightarrow S - S \mid 1 \mid 2 \mid 3$

Ambiguity in CFLs

- Original grammar: $S \rightarrow S S \mid 1 \mid 2 \mid 3$
- Unambiguous grammar:

$$S \to S - C \mid 1 \mid 2 \mid 3$$

 $C \to 1 \mid 2 \mid 3$

The grammar forces a parse corresponding to left-to-right evaluation.

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that L = L(G).

- There exist inherently ambiguous CFLs. **Example:** $L = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$
- Given a grammar **G** it is undecidable to check whether **L**(**G**) is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that L = L(G).

- There exist inherently ambiguous CFLs. **Example:** $L = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$
- \bullet Given a grammar G it is undecidable to check whether L(G) is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that L = L(G).

- There exist inherently ambiguous CFLs. Example: $L = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$
- Given a grammar G it is undecidable to check whether L(G) is inherently ambiguous. No algorithm!

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: $S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$

Theorem

$$L(G) = \{palindromes\} = \{w \mid w = w^R\}$$

Two directions:

- $L(G) \subseteq L$, that is, $S \rightsquigarrow^* w$ then $w = w^R$
- $L \subseteq L(G)$, that is, $w = w^R$ then $S \rightsquigarrow^* w$

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: $S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$

Theorem

$$L(G) = \{palindromes\} = \{w \mid w = w^R\}$$

Two directions:

- $L(G) \subseteq L$, that is, $S \rightsquigarrow^* w$ then $w = w^R$
- $L \subseteq L(G)$, that is, $w = w^R$ then $S \rightsquigarrow^* w$

$L(G) \subseteq L$

Show that if $S \rightsquigarrow^* w$ then $w = w^R$

By induction on length of derivation, meaning For all $k \ge 1$, $S \rightsquigarrow^{*k} w$ implies $w = w^R$.

- If $S \rightsquigarrow^1 w$ then $w = \epsilon$ or w = a or w = b. Each case $w = w^R$.
- Assume that for all k < n, that if $S \rightarrow^k w$ then $w = w^R$
- Let $S \rightsquigarrow^n w$ (with n > 1). Wlog w begin with a.
 - Then $S \to aSa \leadsto^{k-1} aua$ where w = aua.
 - And $S \rightsquigarrow^{n-1} u$ and hence IH, $u = u^R$.
 - Therefore $w^r = (aua)^R = (ua)^R a = au^R a = aua = w$.

$L(G) \subseteq L$

Show that if $S \rightsquigarrow^* w$ then $w = w^R$

By induction on length of derivation, meaning For all k > 1, $S \sim^{*k} w$ implies $w = w^R$.

- If $S \rightsquigarrow^1 w$ then $w = \epsilon$ or w = a or w = b. Each case $w = w^R$.
- Assume that for all k < n, that if $S \rightarrow^k w$ then $w = w^R$
- Let $S \rightsquigarrow^n w$ (with n > 1). Wlog w begin with a.
 - Then $S \to aSa \rightsquigarrow^{k-1} aua$ where w = aua.
 - And $S \rightsquigarrow^{n-1} u$ and hence IH, $u = u^R$.
 - Therefore $w^r = (aua)^R = (ua)^R a = au^R a = aua = w$.

$L \subseteq L(G)$

Show that if $w = w^R$ then $S \rightsquigarrow^* w$.

By induction on |w|That is, for all $k \ge 0$, |w| = k and $w = w^R$ implies $S \rightsquigarrow^* w$.

Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Chomsky Normal Form:

- Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed.
- ullet Every CFG $oldsymbol{G}$ can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- ullet Only productions of the form A o aeta are allowed.
- All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Chomsky Normal Form:

- Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed.
- ullet Every CFG $oldsymbol{G}$ can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $A \to a\beta$ are allowed.
- All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.