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Part I

Fast Multiplication
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Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238
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Time Analysis of Grade School Multiplication

1 Each partial product: Θ(n)
2 Number of partial products: Θ(n)
3 Addition of partial products: Θ(n2)

4 Total time: Θ(n2)
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A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac − bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d) − ac − bd
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits
1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0
2 x = xn−1 . . . xn/20 . . . 0 + xn/2−1 . . . x0
3 x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and

xR = xn/2−1 . . . x0
4 Similarly y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and

yR = yn/2−1 . . . y0
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Example

1234 × 5678 = (100 × 12 + 34) × (100 × 56 + 78)
= 10000 × 12 × 56

+100 × (12 × 78 + 34 × 56)
+34 × 78
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0
2 x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and

xR = xn/2−1 . . . x0
3 y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and

yR = yn/2−1 . . . y0

Therefore

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR
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Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?
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Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR) − xLyL − xRyR

Recursively compute only xLyL, xRyR , (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means T(n) = O(nlog2 3) = O(n1.585)
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State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using
Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture
There is an O(n log n) time algorithm.
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Analyzing the Recurrences

1 Basic divide and conquer: T(n) = 4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = Θ(n2).

2 Saving a multiplication: T(n) = 3T(n/2) + O(n),
T(1) = 1. Claim: T(n) = Θ(n1+log 1.5)

Use recursion tree method:
1 In both cases, depth of recursion L = log n.
2 Work at depth i is 4in/2i and 3in/2i respectively: number of

children at depth i times the work at each child
3 Total work is therefore n

∑L
i=0 2i and n

∑L
i=0(3/2)i

respectively.
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Recursion tree analysis
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Part II

Selecting in Unsorted Lists
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Rank of element in an array

A: an unsorted array of n integers

Definition
For 1 ≤ j ≤ n, element of rank j is the j ’th smallest element in A.

16 1214 20 534 3 19 11

1612 14 205 343 1911

12 3456 789

Unsorted array

Ranks

Sort of array
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11.3: Selection
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are
distinct

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 38



Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are
distinct

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 38



Algorithm I

1 Sort the elements in A
2 Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?
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Algorithm II

If j is small or n − j is small then
1 Find j smallest/largest elements in A in O(jn) time. (How?)
2 Time to find median is O(n2).
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QuickSelect
Divide and Conquer Approach

1 Pick a pivot element a from A
2 Partition A based on a.

Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}
3 |Aless| = j : return a
4 |Aless| > j : recursively find jth smallest element in Aless
5 |Aless| < j : recursively find kth smallest element in Agreater

where k = j − |Aless|.
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Example

16 1214 20 534 3 19 11
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Time Analysis

1 Partitioning step: O(n) time to scan A
2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time
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A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
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Divide and Conquer Approach
A game of medians

Idea
1 Break input A into many subarrays: L1, . . . Lk .
2 Find median mi in each subarray Li .
3 Find the median x of the medians m1, . . . ,mk .
4 Intuition: The median x should be close to being a good median

of all the numbers in A.
5 Use x as pivot in previous algorithm.
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New example

The input:
75 31 13 26 83 110 60 120 63 30 3 41 44 107 30 23 91 17 6 110
68 24 41 26 58 57 61 20 52 45 13 79 86 91 55 66 13 103 36 60
19 40 45 111 56 74 17 95 96 77 29 65 36 96 93 119 9 61 3 9
100 3 88 47 115 107 79 39 109 20 59 25 92 81 36 10 30 113 73 116
72 58 24 16 12 69 40 24 19 92 7 65 75 41 43 117 103 38 8 20

Compute median of the medians (recursive call):
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60

After partition (pivot 60):
19 3 13 16 12 57 17 20 19 20 3 25 92 109 96 79 110 69 83 75
41 24 24 26 56 17 40 24 52 30 7 60 77 81 63 61 107 115 111 72
20 31 41 26 58 30 60 39 36 45 13 65 75 91 120 66 74 61 88 68
9 40 45 47 3 13 23 55 30 44 29 65 86 96 95 117 91 103 100 110
36 58 8 6 38 9 10 43 41 36 59 79 92 107 93 119 103 113 73 116

Tail recursive call: Select element of rank 50 out of 56 elements.
19 3 13 16 12 57 17 20 19 20 3 25
41 24 24 26 56 17 40 24 52 30 7
20 31 41 26 58 30 60 39 36 45 13
9 40 45 47 3 13 23 55 30 44 29
36 58 8 6 38 9 10 43 41 36 59
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Example

11 7 3 42 174 310 1 92 87 12 19 15

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6

comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5

X

i�0

Å
9

10

ãi
=

11n
5

· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��
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Choosing the pivot
A clash of medians

1 Partition array A into dn/5e lists of 5 items each.
L1 = {A[1],A[2], . . . ,A[5]}, L2 = {A[6], . . . ,A[10]}, . . .,
Li = {A[5i + 1], . . . ,A[5i − 4]}, . . .,
Ldn/5e = {A[5dn/5e − 4, . . . ,A[n]}.

2 For each i find median bi of Li using brute-force in O(1) time.
Total O(n) time

3 Let B = {b1, b2, . . . , bdn/5e}
4 Find median b of B

Lemma
Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aless| ≤ 7n/10 + 6 and
|Agreater| ≤ 7n/10 + 6.
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Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i − 4], . . . ,A[5i ]}
Find median bi of each Li using brute-force
Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot
if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j − |Aless|)

How do we find median of B?
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Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i − 4], . . . ,A[5i ]}
Find median bi of each Li using brute-force
B = [b1, b2, . . . , bdn/5e]
b = select(B, dn/10e)
Partition A into Aless and Agreater using b as pivot
if (|Aless|) = j return b
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Running time of deterministic median selection
A dance with recurrences

T(n) ≤ T(dn/5e) + max{T(|Aless|),T(|Agreater)|} + O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)
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Recursion tree fill in
n

n/5
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Recursion tree fill in
n

n/5

(1/5)n, (7/10)n
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Recursion tree fill in
n

n/5

(1/25)n, (7/50)n, (7/50)n, (49/100)n
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Recursion tree fill in
n

n/5

(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n,
(49/500)n, (49/500)n, (343/1000)n
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Median of Medians: Proof of Lemma

Proposition
There are at least 3n/10 − 6 elements smaller than the median of
medians b .�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6

comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
5
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· 10= 22n.

This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..

��

�. R��������

Figure �.8. Visualizing the median of medians

Figure �.�. Discarding approximately �/�� of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T (n) O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size � instead of �, the running time recurrence would have been

T (n) O(n) + T (n/3) + T (2n/3),

whose solution is O(n log n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6

comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n� 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T (n) 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n) 11n
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This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse
than sorting for even moderately large arrays..
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Median of Medians: Proof of Lemma

Proposition
There are at least 3n/10 − 6 elements smaller than the median of
medians b .

Proof.
At least half of the bn/5c groups have at least 3 elements smaller
than b , except for the group containing b which has 2 elements
smaller than b . Hence number of elements smaller than b is:

3b
bn/5c + 1

2
c − 1 ≥ 3n/10 − 6

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 38



Median of Medians: Proof of Lemma

Proposition
There are at least 3n/10 − 6 elements smaller than the median of
medians b .

Corollary
|Agreater| ≤ 7n/10 + 6.

Via symmetric argument,

Corollary
|Aless| ≤ 7n/10 + 6.
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Summary: Selection in linear time

Theorem
The algorithm select(A[1 . . n], k) computes in O(n) deterministic
time the kth smallest element in A.

On the other hand, we have:

Lemma
The algorithm QuickSelect(A[1 . . n], k) computes the kth
smallest element in A. The running time of QuickSelect is Θ(n2)
in the worst case.
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Questions to ponder

1 Why did we choose lists of size 5? Will lists of size 3 work?
2 Write a recurrence to analyze the algorithm’s running time if we

choose a list of size k.
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Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!
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Takeaway Points

1 Recursion tree method and guess and verify are the most reliable
methods to analyze recursions in algorithms.

2 Recursive algorithms naturally lead to recurrences.
3 Some times one can look for certain type of recursive algorithms

(reverse engineering) by understanding recurrences and their
behavior.
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