Algorithms & Models of Computation CS/ECE 374, Spring 2019

Kartsuba's Algorithm and Linear Time Selection

Lecture 11 Thursday, February 21, 2019

LATEXed: December 27, 2018 08:26

Part I

Fast Multiplication

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

 $\begin{array}{r}
 3141 \\
 \times 2718 \\
 \hline
 25128 \\
 3141 \\
 21987 \\
 \underline{6282} \\
 8537238
\end{array}$

Time Analysis of Grade School Multiplication

- **1** Each partial product: $\Theta(n)$
- 2 Number of partial products: $\Theta(n)$
- **3** Addition of partial products: $\Theta(n^2)$
- Total time: $\Theta(n^2)$

4

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then

$$(ad + bc) = (a + b)(c + d) - ac - bd$$

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

- **3** $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- $ext{ Similarly } y = 10^{n/2} y_L + y_R ext{ where } y_L = y_{n-1} \dots y_{n/2} ext{ and } y_R = y_{n/2-1} \dots y_0$

Example

$$1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)$$

$$= 10000 \times 12 \times 56$$

$$+100 \times (12 \times 78 + 34 \times 56)$$

$$+34 \times 78$$

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

- ② $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- $y = 10^{n/2} y_L + y_R$ where $y_L = y_{n-1} \dots y_{n/2}$ and $y_R = y_{n/2-1} \dots y_0$

Therefore

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $O(n \log n2^{O(\log^* n)})$ time

Conjecture

There is an $O(n \log n)$ time algorithm.

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- ① In both cases, depth of recursion $L = \log n$.
- ② Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- ① Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- **1** In both cases, depth of recursion $L = \log n$.
- Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- **3** Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Recursion tree analysis

Part II

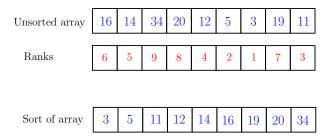
Selecting in Unsorted Lists

Rank of element in an array

A: an unsorted array of **n** integers

Definition

For $1 \leq j \leq n$, element of rank j is the j'th smallest element in A.



11.3: Selection

Problem - Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers and integer \boldsymbol{j} Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Median:
$$j = \lfloor (n+1)/2 \rfloor$$

Simplifying assumption for sake of notation: elements of \boldsymbol{A} are distinct

Problem - Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers and integer \boldsymbol{j} Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Median:
$$j = \lfloor (n+1)/2 \rfloor$$

Simplifying assumption for sake of notation: elements of \boldsymbol{A} are distinct

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

18

Algorithm II

If j is small or n-j is small then

- Find j smallest/largest elements in A in O(jn) time. (How?)
- ② Time to find median is $O(n^2)$.

QuickSelect

Divide and Conquer Approach

- Pick a pivot element a from A
- Partition A based on a.

$$m{A}_{ ext{less}} = \{ m{x} \in m{A} \mid m{x} \leq m{a} \} ext{ and } m{A}_{ ext{greater}} = \{ m{x} \in m{A} \mid m{x} > m{a} \}$$

- ullet $|m{A}_{
 m less}| > m{j}$: recursively find $m{j}$ th smallest element in $m{A}_{
 m less}$
- **5** $|A_{less}| < j$: recursively find kth smallest element in $A_{greater}$ where $k = j |A_{less}|$.

Example

16	14	34	20	12	5	3	19	11
----	----	----	----	----	---	---	----	----

- Partitioning step: O(n) time to scan A
- 4 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be **A[1]**.

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

- Partitioning step: O(n) time to scan A
- How do we choose pivot? Recursive running time? Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

- Partitioning step: O(n) time to scan A
- Output
 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say **A** is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is *approximately* in the middle of **A**

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is *approximately* in the middle of **A**

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of Λ

That is pivot is *approximately* in the middle of **A**

Then $n/4 \le |A_{\rm less}| \le 3n/4$ and $n/4 \le |A_{\rm greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of Λ

That is pivot is *approximately* in the middle of **A**

Then $n/4 \le |A_{\rm less}| \le 3n/4$ and $n/4 \le |A_{\rm greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is *approximately* in the middle of **A**

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Divide and Conquer Approach

A game of medians

Idea

- **1** Break input **A** into many subarrays: $L_1, \ldots L_k$.
- Find median m_i in each subarray L_i.
- **3** Find the median x of the medians m_1, \ldots, m_k .
- ullet Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

24

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72 74 13 66 31 60 65 30 41 39 75 61 26 63 91 8

26 63 91 8 58 45 43 60

After partition (pivot 60):

 19
 3
 13
 16
 12
 57
 17
 20
 19
 20
 3
 25
 92
 109
 96
 79
 110
 69
 83
 75

 41
 24
 24
 26
 56
 17
 40
 24
 52
 30
 7
 60
 77
 81
 63
 61
 107
 115
 111
 72

 20
 31
 41
 26
 58
 30
 03
 9
 45
 45
 13
 65
 75
 91
 120
 66
 74
 61
 88
 68

 9
 40
 45
 47
 3
 13
 23
 55
 30
 44
 29
 65
 86
 96
 95
 117
 91
 103
 100
 110

 36
 58
 8
 6
 38
 9
 10
 43
 41
 36
 59
 79
 92
 107
 93
 119
 103
 113

Tail recursive call: Select element of rank 50 out of 56 elements.

 19
 3
 13
 16
 12
 57
 17
 20
 19
 20
 3
 25

 41
 24
 24
 26
 56
 17
 40
 24
 52
 30
 7

 20
 31
 41
 26
 58
 30
 60
 39
 36
 45
 45
 13
 23
 55
 30
 44
 29

 36
 58
 8
 6
 38
 9
 10
 43
 41
 36
 59

The input:

- 1	75	31	13	26	83	110	60	120	63	30	-		44	107	30	23	91	17	6	110
Ì	68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
ı	19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
	100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
	72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	60

After partition (pivot **60**):

 19
 3
 13
 16
 12
 57
 17
 20
 19
 20
 3
 25
 92
 109
 96
 79
 110
 69
 83
 75

 41
 24
 26
 56
 17
 40
 24
 52
 30
 7
 60
 77
 81
 63
 61
 107
 115
 111
 72

 20
 31
 41
 26
 58
 30
 03
 93
 64
 51
 36
 75
 91
 120
 66
 74
 61
 88
 68

 9
 40
 45
 47
 3
 13
 23
 55
 30
 44
 29
 65
 86
 96
 95
 91
 103
 100
 110

 36
 58
 8
 6
 38
 9
 10
 43
 41
 36
 59
 79
 92
 107
 93
 119
 103
 113
 73
 116

</t

Tail recursive call: Select element of rank 50 out of 56 elements

 19
 3
 13
 16
 12
 57
 17
 20
 19
 20
 3
 25

 41
 24
 24
 26
 56
 17
 40
 24
 52
 30
 7

 20
 31
 41
 26
 58
 30
 60
 39
 36
 45
 13

 9
 40
 45
 47
 3
 13
 23
 55
 30
 44
 29

 36
 58
 8
 6
 38
 9
 10
 43
 41
 36
 59

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	60

After partition (pivot **60**):

	19	3	13	16	12	57	17	20	19	20	3	25	92	109	96	79	110	69	83	75
	41	24	24	26	56	17	40	24	52	30	7	60	77	81	63	61	107	115	111	72
Ì	20	31	41	26	58	30	60	39	36	45	13	65	75	91	120	66	74	61	88	68
Ī	9	40	45	47	3	13	23	55	30	44	29	65	86	96	95	117	91	103	100	110
[36	58	8	6	38	9	10	43	41	36	59	79	92	107	93	119	103	113	73	116

Tail recursive call: Select element of rank 50 out of 56 elements

 19
 3
 13
 16
 12
 57
 17
 20
 19
 20
 3
 25

 41
 24
 24
 26
 56
 17
 40
 24
 52
 30
 7

 20
 31
 41
 26
 58
 30
 60
 39
 36
 45
 13

 9
 40
 45
 47
 3
 13
 23
 55
 30
 44
 29

 36
 58
 8
 6
 38
 9
 10
 43
 41
 36
 59

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	60

After partition (pivot **60**):

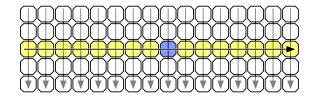
19	3	13	16	12	57	17	20	19	20	3	25	92	109	96	79	110	69	83	75
41	24	24	26	56	17	40	24	52	30	7	60	77	81	63	61	107	115	111	72
20	31	41	26	58	30	60	39	36	45	13	65	75	91	120	66	74	61	88	68
9	40	45	47	3	13	23	55	30	44	29	65	86	96	95	117	91	103	100	110
36	58	8	6	38	9	10	43	41	36	59	79	92	107	93	119	103	113	73	116

Tail recursive call: Select element of rank 50 out of 56 elements.

19	3	13	16	12	57	17	20	19	20	3	25
41	24	24	26	56	17	40	24	52	30	7	
20	31	41	26	58	30	60	39	36	45	13	
9	40	45	47	3	13	23	55	30	44	29	
36	58	8	6	38	9	10	43	41	36	59	

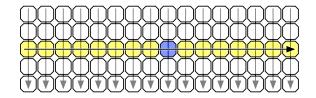
Example

11 7 3 42 174 310 1 92 87 12 19 18
--



Example

11 7 3 42 174 310 1 92 87 12 19 18
--



Choosing the pivot

A clash of medians

- **1** Partition array **A** into $\lceil n/5 \rceil$ lists of **5** items each. $L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_i = \{A[5i+1], \ldots, A[5i-4]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil 4, \ldots, A[n]\}.$
- **②** For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- **3** Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used a pivot to partition **A**, then $|A_{less}| \leq 7n/10 + 6$ and $|A_{greater}| \leq 7n/10 + 6$.

Choosing the pivot

A clash of medians

- Partition array A into $\lceil n/5 \rceil$ lists of S items each. $L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_i = \{A[5i+1], \ldots, A[5i-4]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil 4, \ldots, A[n]\}.$
- ② For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- Find median b of B

Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used a pivot to partition **A**, then $|\mathbf{A}_{less}| \leq 7n/10 + 6$ and $|\mathbf{A}_{greater}| < 7n/10 + 6$.

A storm of medians

```
 \begin{array}{l} \text{select}(A,\ j) \colon \\ & \text{Form lists } L_1, L_2, \dots, L_{\lceil n/5 \rceil} \text{ where } L_i = \{A[5i-4], \dots, A[5i]\} \\ & \text{Find median } b_i \text{ of each } L_i \text{ using brute-force} \\ & \text{Find median } b \text{ of } B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \text{Partition } A \text{ into } A_{\text{less}} \text{ and } A_{\text{greater}} \text{ using } b \text{ as pivot} \\ & \text{if } (|A_{\text{less}}|) = j \text{ return } b \\ & \text{else if } (|A_{\text{less}}|) > j) \\ & \text{return select}(A_{\text{less}},\ j) \\ & \text{else} \\ & \text{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \\ \end{array}
```

How do we find median of B?

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\,j) : \\ & \textbf{Form lists}\,\, L_1, L_2, \dots, L_{\lceil n/5 \rceil} \,\, \textbf{where}\,\, L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\,\, b_i \,\, \textbf{of each}\,\, L_i \,\, \textbf{using brute-force} \\ & \textbf{Find median}\,\, b_i \,\, \textbf{of} \,\, B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\,\, A_i \,\, \textbf{into}\,\, A_{\text{less}} \,\, \textbf{and}\,\, A_{\text{greater}} \,\, \textbf{using}\,\, b_i \,\, \textbf{as pivot} \\ & \textbf{if}\,\, (|A_{\text{less}}|) = j \,\, \textbf{return}\,\, b_i \\ & \textbf{else}\,\, \textbf{if}\,\, (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\,j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\,j - |A_{\text{less}}|) \\ \end{array}
```

How do we find median of **B**? Recursively!

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\,j) : \\ & \textbf{Form lists}\,\, L_1, L_2, \dots, L_{\lceil n/5 \rceil} \,\, \textbf{where}\,\, L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\,\, b_i \,\, \textbf{of each}\,\, L_i \,\, \textbf{using brute-force} \\ & \textbf{Find median}\,\, b \,\, \textbf{of}\,\, B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\,\, A \,\, \textbf{into}\,\, A_{\text{less}} \,\, \textbf{and}\,\, A_{\text{greater}} \,\, \textbf{using}\,\, b \,\, \textbf{as pivot} \\ & \textbf{if}\,\, (|A_{\text{less}}|) = j \,\, \textbf{return}\,\, b \\ & \textbf{else}\,\, \textbf{if}\,\, (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\,j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\,j - |A_{\text{less}}|) \\ \end{array}
```

How do we find median of **B**? Recursively!

A storm of medians

```
 \begin{split} & \operatorname{select}(A, \ j) : \\ & \quad \text{Form lists } L_1, L_2, \dots, L_{\lceil n/5 \rceil} \text{ where } L_i = \{A[5i-4], \dots, A[5i]\} \\ & \quad \text{Find median } b_i \text{ of each } L_i \text{ using brute-force} \\ & \quad B = [b_1, b_2, \dots, b_{\lceil n/5 \rceil}] \\ & \quad b = \operatorname{select}(B, \ \lceil n/10 \rceil) \\ & \quad \text{Partition } A \text{ into } A_{\operatorname{less}} \text{ and } A_{\operatorname{greater}} \text{ using } b \text{ as pivot} \\ & \quad \text{if } (|A_{\operatorname{less}}|) = j \text{ return } b \\ & \quad \text{else if } (|A_{\operatorname{less}}|) > j) \\ & \quad \text{return select}(A_{\operatorname{less}}, \ j) \\ & \quad \text{else} \\ & \quad \text{return select}(A_{\operatorname{greater}}, \ j - |A_{\operatorname{less}}|) \end{aligned}
```

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

$$T(n) = O(1) \qquad n < 10$$

Exercise: show that T(n) = O(n)

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

$$T(n) = O(1) \qquad n < 10$$

Exercise: show that T(n) = O(n)

Running time of deterministic median selection

A dance with recurrences

$$T(n) \leq T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

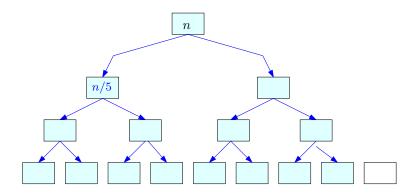
From Lemma,

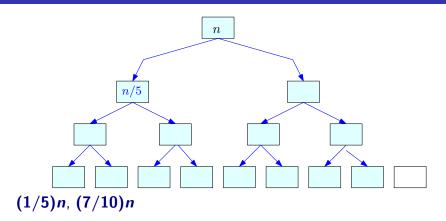
$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

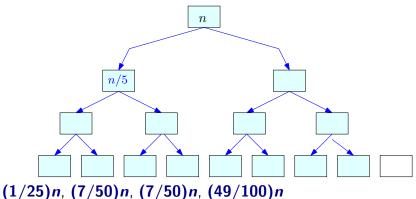
and

$$T(n) = O(1) \qquad n < 10$$

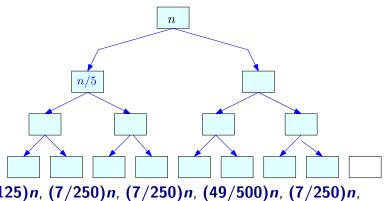
Exercise: show that T(n) = O(n)







(1/25)n, (7/50)n, (7/50)n, (49/100)n

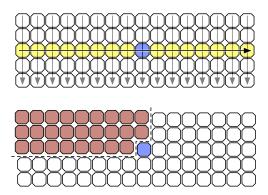


(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n, (49/500)n, (49/500)n, (343/1000)n

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10 - 6 elements smaller than the median of medians **b**.



Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians **b**.

Proof.

At least half of the $\lfloor n/5 \rfloor$ groups have at least 3 elements smaller than \boldsymbol{b} , except for the group containing \boldsymbol{b} which has 2 elements smaller than \boldsymbol{b} . Hence number of elements smaller than \boldsymbol{b} is:

$$3\lfloor \frac{\lfloor n/5\rfloor + 1}{2} \rfloor - 1 \geq 3n/10 - 6$$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians **b**.

Corollary

$$|A_{greater}| \leq 7n/10 + 6.$$

Via symmetric argument,

Corollary

$$|\mathbf{A}_{less}| \leq 7n/10 + 6.$$

34

Summary: Selection in linear time

Theorem

The algorithm select(A[1 .. n], k) computes in O(n) deterministic time the kth smallest element in A.

On the other hand, we have:

Lemma

The algorithm QuickSelect(A[1 ... n], k) computes the kth smallest element in A. The running time of QuickSelect is $\Theta(n^2)$ in the worst case.

Questions to ponder

- Why did we choose lists of size **5**? Will lists of size **3** work?
- ② Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

All except Vaughn Pratt!

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- Recursive algorithms naturally lead to recurrences.
- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.