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Part |

Greedy Algorithms: Tools and

Techniques




What is a Greedy Algorithm?
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What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:
© make decision incrementally in small steps without backtracking

© decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

© decisions often based on some fixed and simple priority rules
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Pros and Cons of Greedy Algorithms

Pros:
@ Usually (too) easy to design greedy algorithms
@ Easy to implement and often run fast since they are simple
@ Several important cases where they are effective/optimal

© Lead to a first-cut heuristic when problem not well understood
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Pros and Cons of Greedy Algorithms

Pros:

@ Usually (too) easy to design greedy algorithms

@ Easy to implement and often run fast since they are simple

@ Several important cases where they are effective/optimal

© Lead to a first-cut heuristic when problem not well understood
Cons:

© Very often greedy algorithms don't work. Easy to lull oneself
into believing they work

© Many greedy algorithms possible for a problem and no
structured way to find effective ones
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Pros and Cons of Greedy Algorithms

Pros:

@ Usually (too) easy to design greedy algorithms

@ Easy to implement and often run fast since they are simple

@ Several important cases where they are effective/optimal

© Lead to a first-cut heuristic when problem not well understood
Cons:

© Very often greedy algorithms don't work. Easy to lull oneself
into believing they work

© Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness
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Greedy Algorithm Types

Crude classification:

@ Non-adaptive: fix some ordering of decisions a priori and stick
with the order

@ Adaptive: make decisions adaptively but greedily/locally at each
step
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Greedy Algorithm Types

Crude classification:

@ Non-adaptive: fix some ordering of decisions a priori and stick
with the order

@ Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:
© See several examples

© Pick up some proof techniques
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Part 1l

Scheduling Jobs to Minimize Average

Waiting Time




The Problem

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
@ One server/machine/person available to process jobs.
@ Schedule/order jobs to min. total or average waiting time

e Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

h| | B Js| Is| Jg
time| 3 | 4|1 |8 |26
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@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
@ One server/machine/person available to process jobs.
@ Schedule/order jobs to min. total or average waiting time

e Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

h| | B Js| Is| Jg
time| 3 | 4|1 |8 |26

Example: schedule is J;, J>, J3, J4y, J5, J. Total waiting time is

0+3+B3+4)+B3+4+1)+(3+4+1+8)+...=
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@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
@ One server/machine/person available to process jobs.
@ Schedule/order jobs to min. total or average waiting time

e Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

h| | B Js| Is| Jg
time| 3 | 4|1 |8 |26

Example: schedule is J;, J>, J3, J4y, J5, J. Total waiting time is
0+3+B3+4)+B3+4+1)+(3+4+1+8)+...=
Optimal schedule:
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The Problem

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
@ One server/machine/person available to process jobs.
@ Schedule/order jobs to min. total or average waiting time

e Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

h| | B Js| Is| Jg
time| 3 | 4|1 |8 |26

Example: schedule is J;, J>, J3, J4y, J5, J. Total waiting time is
0+3+B3+4)+B3+4+1)+(3+4+1+8)+...=

Optimal schedule: Shortest Job First. J3, J5, J1, J2, Jg, Js.
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Optimality of Shortest Job First (SJF)

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.
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Optimality of Shortest Job First (SJF)

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy: exchange argument
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Optimality of Shortest Job First (SJF)

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy: exchange argument
Assume without loss of generality that job sorted in increasing order

of processing time and hence p; < p» < ... < p, and SJF order is
Jis oy iy dn.
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Optimality of SJF: Proof by picture
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Optimality of SJF: Proof by picture
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Inversions

Definition

A schedule J;, J;,, . . ., J;, has an inversion if there are jobs J, and
Jp such that S schedules J, before Jp, but p, > pp.
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Inversions

Definition

A schedule J;, J;,, . . ., J;, has an inversion if there are jobs J, and
Jp such that S schedules J, before Jp, but p, > pp.

If a schedule has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.
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Proof of optimality of SJF

SJF = Shortest Job First

Recall SJF order is J1, oy .oy .
o Let J;, J;,...,d; bean optimum schedule with fewest
inversions.
@ If schedule has no inversions then it is identical to SJF schedule
and we are done.
@ Otherwise there is an 1 < £ < n such that iy > ip4q since
schedule has inversion among two adjacently scheduled jobs
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Proof of optimality of SJF

SJF = Shortest Job First

Recall SJF order is J1, oy .oy .
o Let J;, J;,...,d; bean optimum schedule with fewest
inversions.
@ If schedule has no inversions then it is identical to SJF schedule
and we are done.
@ Otherwise there is an 1 < £ < n such that iy > ip4q since
schedule has inversion among two adjacently scheduled jobs

The schedule obtained from J; , J,, . . . , J;, by exchanging/swapping

positions of jobs J;, and J;, , is also optimal and has one fewer

inversion.

ip41

Assuming claim we obtain a contradiction and hence optimum

schedule with fewest inversions must be the SJF schedule.
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A Weighted Version

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
and a non-negative weight w;

@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting
time

e Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

@ Goal: minimize total weighted waiting time.

Il b | | ds | J5| s
time 31411 8 216
weight | 10 | 5 | 2 100 | 1 | 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 12 Spring 2019 12/1



Part |lI

Scheduling to Minimize Lateness




Scheduling to Minimize Lateness

@ Given jobs Jy, J5, ..., J, with deadlines and processing times to
be scheduled on a single resource.

Q If a job i/ starts at time s; then it will finish at time f; = s; + t;,
where t; is its processing time. d;: deadline.

© The lateness of a job is ¢; = max(0, f; — d}).

@ Schedule all jobs such that L = max £; is minimized.

J3 J2 Jﬁ J1I Js J4
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Scheduling to Minimize Lateness

@ Given jobs Jy, J5, ..., J, with deadlines and processing times to
be scheduled on a single resource.

Q If a job i/ starts at time s; then it will finish at time f; = s; + t;,
where t; is its processing time. d;: deadline.

© The lateness of a job is ¢; = max(0, f; — d}).

@ Schedule all jobs such that L = max £; is minimized.

J1 Jz J3 J4 J5 J6

ti | 3 2 1 4 3 2
d| 6|8 |9]9]|14]|15

=2  £5=0 t4=6

] ] l
(o ] | A 1 s | 5 |
0 1L 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chan, Har-Peled, Hassanieh (UIUC) CS374 14 Spring 2019 14/1



Greedy Template

Initially R is the set of all requests
curr_time = 0
max _lateness = 0
while R is not empty do

choose i € R

curr_time = curr_time + t;

if (curr_time > d;) then

max_lateness = max(curr_time — d;, max_lateness)

return max_lateness

Main task: Decide the order in which to process jobs in R
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Three Algorithms

@ Shortest job first — sort according to t;.
@ Shortest slack first — sort according to d; — t;.
© EDF = Earliest deadline first — sort according to d;.
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Three Algorithms

@ Shortest job first — sort according to t;.
@ Shortest slack first — sort according to d; — t;.
© EDF = Earliest deadline first — sort according to d;.

Counter examples for first two: exercise
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Earliest Deadline First
Greedy with EDF rule minimizes maximum lateness. \
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Earliest Deadline First

Greedy with EDF rule minimizes maximum lateness.

_

Proof via an exchange argument.

Idle time: time during which machine is not working.

If there is a feasible schedule then there is one with no idle time
before all jobs are finished.
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Inversions

EDF = Earliest Deadline First

Assume jobs are sorted such that d; < dr, < ... < d,. Hence
EDF schedules them in this order.

Definition

A schedule S is said to have an inversion if there are jobs i and j
such that S schedules i before j, but d; > d;.
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Definition

A schedule S is said to have an inversion if there are jobs i and j
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If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.
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Proof sketch of Optimality of EDP

@ Let S be an optimum schedule with smallest number of
inversions.

@ If S has no inversions then this is same as EDF and we are
done.

@ Else S has two adjacent jobs i and j with d; > d;.

@ Swap positions of i and j to obtain a new schedule S’

Maximum lateness of S’ is no more than that of S. And S’ has
strictly fewer inversions than S.
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Part |V

Maximum Weight Subset of

Elements: Cardinality and Beyond




Picking k elements to maximize total weight

@ Given n items each with non-negative weights/profits and

integer 1 < k < n.

@ Goal: pick k elements to maximize total weight of items picked.

el | €| e3 | é4 | €5 | 6

weight | 3 | 2 |1 | 4]|3]2
k =2:
k =3:
k=4
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Greedy Template

N is the set of all elements X < 0
(* X will store all the elements that will be picked *)
while |X| < kK and N is not empty do
choose e € N of maximum weight
add e to X
remove ej from N
return the set X

Remark: One can rephrase algorithm simply as sorting elements in
decreasing weight order and picking the top k elements but the
above template generalizes to other settings a bit more easily.
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Greedy Template

N is the set of all elements X < 0
(* X will store all the elements that will be picked *)
while |X| < kK and N is not empty do
choose e € N of maximum weight
add e to X
remove ej from N
return the set X

Remark: One can rephrase algorithm simply as sorting elements in
decreasing weight order and picking the top k elements but the
above template generalizes to other settings a bit more easily.

Greedy is optimal for picking k elements of maximum weight.
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A more interesting problem

Given n items N = {e, e,...,e,}. Each item g; has a
non-negative weight w;.

Items partitioned into h sets Ny, Ny, ..., Np. Think of each
item having one of h colors.

Given integers ki, ka, . .., kp and another integer k

Goal: pick k elements such that no more than k; from N; to
maximize total weight of items picked.

€1 | € | €3 | € | 6 | 6 | &
weight | 9 | 5| 4 |7 |5 |21

Ny = {e1, e, e3}, No = {es, &5}, N3 = {eg, €7}
k=4 ki =2,k =1,k3 =2
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Greedy Template

N is the set of all elements X < 0
(* X will store all the elements that will be picked *)
while N is not empty do
N ={e; € N| XU{e} is feasible}
if N' =0 then break
choose € € N’ of maximum weight
add e to X
remove € from N
return the set X
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Greedy Template

N is the set of all elements X < 0
(* X will store all the elements that will be picked *)
while N is not empty do
N ={e; € N| XU{e} is feasible}
if N' =0 then break
choose € € N’ of maximum weight
add e to X
remove € from N
return the set X

Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum

weight independent set in a matroid. Beyond scope of course.
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Part V

Interval Scheduling




Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).
Goal: Schedule as many jobs as possible
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Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).
Goal: Schedule as many jobs as possible

® Two jobs with overlapping intervals cannot both be
scheduled!
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Greedy Template

R is the set of all requests
X + 0 (x» X will store all the jobs that will be scheduled *)
while R is not empty do

choose i € R

add i to X

remove from R all requests that overlap with i

return the set X
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Greedy Template

R is the set of all requests
X + 0 (x» X will store all the jobs that will be scheduled *)

while R is not empty do
choose i € R

add i to X
remove from R all requests that overlap with i

return the set X
Main task: Decide the order in which to process requests in R
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Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.
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Earliest Start Time
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that start earliest.

Figure: Counter example for earliest start time
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Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure: Counter example for earliest start time
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Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.
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Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure: Counter example for smallest processing time

Chan, Har-Peled, Hassanieh (UIUC) CS374 29 Spring 2019 29/1



Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure: Counter example for smallest processing time

Chan, Har-Peled, Hassanieh (UIUC) CS374 29 Spring 2019 29/1



Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure: Counter example for smallest processing time
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Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.
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Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30/1



Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30/1



Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30/1



Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30/1



Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

; 1 —
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Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chan, Har-Peled, Hassanieh (UIUC) CS374 31 Spring 2019 31/1



Optimal Greedy Algorithm

R is the set of all requests
X + 0 (x X stores the jobs that will be scheduled *)

while R is not empty
choose i € R such that finishing time of /i is smallest

add i to X
remove from R all requests that overlap with i

return X

The greedy algorithm that picks jobs in the order of their finishing
times is optimal.
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Proving Optimality

@ Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts
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the set returned by the greedy algorithm. Then O = X7
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Proving Optimality

@ Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

@ For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X7Not
likely!

Instead we will show that |O| = | X|
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Proof of Optimality: Key Lemma

Let iy be first interval picked by Greedy. There exists an optimum
solution that contains iy.

Proof.

Let O be an arbitrary optimum solution. If i; € O we are done.

v
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Let iy be first interval picked by Greedy. There exists an optimum
solution that contains iy.

Proof.

Let O be an arbitrary optimum solution. If i; € O we are done.
Claim: If i; &€ O then there is exactly one interval j; € O that
conflicts with i;. (proof later)
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Proof of Optimality: Key Lemma

Let iy be first interval picked by Greedy. There exists an optimum
solution that contains iy.

Let O be an arbitrary optimum solution. If i; € O we are done.
Claim: If i; &€ O then there is exactly one interval j; € O that
conflicts with i;. (proof later)

© Form a new set O’ by removing j; from O and adding iy, that is
0= (0 —{n})u{a}.
@ From claim, O’ is a feasible solution (no conflicts).

@ Since |O’| = |0|, O’ is also an optimum solution and it
contains fy. O

v
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Proof of Claim

If i € O, there is exactly one interval j; € O that conflicts with i.

Proof.

@ If noj € O conflicts with i3 then O is not optimal!

@ Suppose ji1,j» € O such that j; # j» and both j; and j, conflict
with i.

@ Since i has earliest finish time, j; and iy overlap at f(i1).
@ For same reason j, also overlaps with iy at f(iy).

@ Implies that ji, jo» overlap at f(i1) but intervals in O cannot
overlap.

See figure in next slide. O

v
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Figure for proof of Claim

J2

J1

. »
|

f(i) G fUa) time

Figure: Since i1 has the earliest finish time, any interval that conflicts with
it does so at f(i1). This implies j1 and jo conflict.
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Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.

Let I be an instance with n intervals

I’: I with i; and all intervals that overlap with i; removed
G(I), G(I"): Solution produced by Greedy on I and /I’

From Lemma, there is an optimum solution O to I and i; € O.
Let O’ = O — {ih}. O’ is a solution to I’

|G(1)] 1+ |G(I')|] (from Greedy description)
1+ |O’| (By induction, G(I') is optimum for I")

O

v I

O

vy
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Implementation and Running Time

Initially R is the set of all requests
X + 0 (x X stores the jobs that will be scheduled *)
while R is not empty
choose i € R such that finishing time of i is least
if i does not overlap with requests in X
add i to X
remove i from R
return the set X

@ Presort all requests based on finishing time. O(nlog n) time
@ Now choosing least finishing time is O(1)

@ Keep track of the finishing time of the last request added to A.
Then check if starting time of i later than that

@ Thus, checking non-overlapping is O(1)
e Total time O(nlog n + n) = O(nlog n)
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Comments

@ Interesting Exercise: smallest interval first picks at least half the
optimum number of intervals.

@ All requests need not be known at the beginning. Such online
algorithms are a subject of research
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Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time s;, a finish

time f;, and a weight w;. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

@ Earliest start time first.
@ Earliest finish time fist.
@ Highest weight first.

@ None of the above.

@ IDK.
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Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time s;, a finish

time f;, and a weight w;. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

@ Earliest start time first.
@ Earliest finish time fist.
@ Highest weight first.

@ None of the above.

@ IDK.

Weighted problem can be solved via dynamic programming. See
notes.
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Greedy Analysis: Overview

© Greedy's first step leads to an optimum solution. Show that
there is an optimum solution leading from the first step of
Greedy and then use induction. Example, Interval Scheduling.

@ Greedy algorithm stays ahead. Show that after each step the
solution of the greedy algorithm is at least as good as the
solution of any other algorithm. Example, Interval scheduling.

© Structural property of solution. Observe some structural bound
of every solution to the problem, and show that greedy algorithm
achieves this bound. Example, Interval Partitioning (see
Kleinberg-Tardos book).

© Exchange argument. Gradually transform any optimal solution
to the one produced by the greedy algorithm, without hurting its
optimality. Example, Minimizing lateness.
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Takeaway Points

@ Greedy algorithms come naturally but often are incorrect. A
proof of correctness is an absolute necessity.

© Exchange arguments are often the key proof ingredient. Focus
on why the first step of the algorithm is correct: need to show
that there is an optimum /correct solution with the first step of
the algorithm.

© Thinking about correctness is also a good way to figure out
which of the many greedy strategies is likely to work.
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