Algorithms & Models of Computation CS/ECE 374, Spring 2019

Polynomial Time Reductions

Lecture 22 Tuesday, April 16, 2019

LATEXed: December 27, 2018 08:25

Part I

(Polynomial Time) Reductions

Reductions

Reduction from Problem \boldsymbol{X} to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y} , we can use it to find an algorithm for Problem \boldsymbol{X} .

Using Reductions

We use reductions to find algorithms to solve problems.

Reductions

Reduction from Problem \boldsymbol{X} to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y} , we can use it to find an algorithm for Problem \boldsymbol{X} .

Using Reductions

We use reductions to find algorithms to solve problems.

Reductions

Reduction from Problem \boldsymbol{X} to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y} , we can use it to find an algorithm for Problem \boldsymbol{X} .

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Reductions for decision problems/languages

For languages L_X , L_Y , a **reduction from L_X to L_Y** is:

- An algorithm ...
- 2 Input: $\mathbf{w} \in \mathbf{\Sigma}^*$
- \bullet Output: $w' \in \Sigma^*$
- Such that:

$$w \in L_Y \iff w' \in L_X$$

(Actually, this is only one type of reduction, but this is the one we'll use most often.) There are other kinds of reductions.

Reductions for decision problems/languages

For languages L_X , L_Y , a reduction from L_X to L_Y is:

- An algorithm ...
- ② Input: $\mathbf{w} \in \mathbf{\Sigma}^*$
- **3** Output: $w' \in \Sigma^*$
- Such that:

$$w \in L_Y \iff w' \in L_X$$

(Actually, this is only one type of reduction, but this is the one we'll use most often.) There are other kinds of reductions.

Reductions for decision problems/languages

For decision problems X, Y, a **reduction from** X **to** Y is:

- An algorithm ...
- 2 Input: I_X , an instance of X.
- **3** Output: I_Y an instance of Y.
- Such that:

```
I_Y is YES instance of Y \iff I_X is YES instance of X
```

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bigcirc \Longrightarrow New algorithm for X:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```

If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bullet New algorithm for X:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```

If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

Using reductions to solve problems

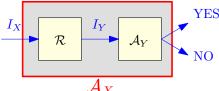
- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bullet New algorithm for X:

```
A_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return A_Y(I_Y)
```



If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

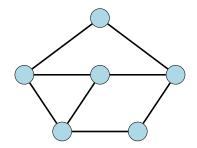
Comparing Problems

- If there is reduction from X to Y...
- "Problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- - X is no harder than Y, or
 - Y is at least as hard as X.

Part II

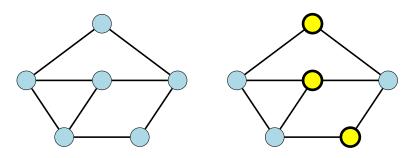
Examples of Reductions

Given a graph G, a set of vertices V' is:



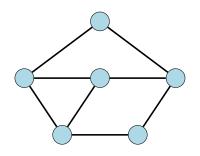
Given a graph G, a set of vertices V' is:

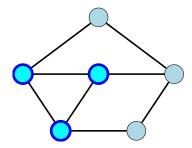
lacktriangledown independent set: no two vertices of V' connected by an edge.



Given a graph G, a set of vertices V' is:

- **1 independent set**: no two vertices of V' connected by an edge.
- clique: every pair of vertices in V' is connected by an edge of G.





The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

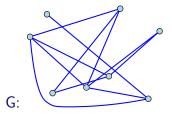
Question: Does G has a clique of size $\geq k$?

Recall

For decision problems X, Y, a reduction from X to Y is:

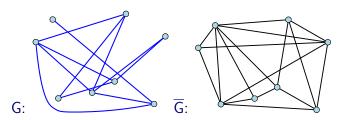
- An algorithm ...
- $oldsymbol{o}$ that takes $oldsymbol{I}_{oldsymbol{X}}$, an instance of $oldsymbol{X}$ as input ...
- \odot and returns I_Y , an instance of Y as output ...
- such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

An instance of **Independent Set** is a graph G and an integer k.



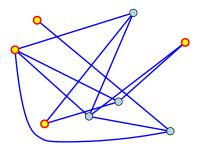
An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle \underline{G}, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the complement of G. \overline{G} has an edge (u, v) if and only if (u, v) is not an edge of G.



An instance of **Independent Set** is a graph G and an integer k.

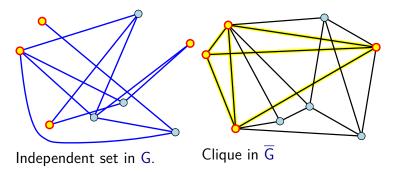
Reduction given $< \underline{G}, k >$ outputs $< \overline{G}, k >$ where \overline{G} is the complement of G. \overline{G} has an edge (u, v) if and only if (u, v) is not an edge of G.



Independent set in G.

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle \underline{G}, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the complement of G. \overline{G} has an edge (u, v) if and only if (u, v) is not an edge of G.



Correctness of reduction

Lemma

G has an independent set of size k if and only if \overline{G} has a clique of size k.

Proof.

Need to prove two facts:

G has independent set of size at least k implies that \overline{G} has a clique of size at least k.

 \overline{G} has a clique of size at least k implies that G has an independent set of size at least k.

Easy to see both from the fact that $S \subseteq V$ is an independent set in

 \boldsymbol{G} if and only if \boldsymbol{S} is a clique in $\overline{\boldsymbol{G}}$.

- Independent Set ≤ Clique.
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Olique is at least as hard as Independent Set.
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

- Independent Set ≤ Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Olique is at least as hard as Independent Set.
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

- Independent Set ≤ Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Olique is at least as hard as Independent Set.
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

- Independent Set ≤ Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Olique is at least as hard as Independent Set.
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

Assume you can solve the **Clique** problem in T(n) time. Then you can solve the **Independent Set** problem in

- O(T(n)) time.
- $O(n \log n + T(n))$ time.
- $O(n^2T(n^2))$ time.
- $O(n^4T(n^4))$ time.
- $O(n^2 + T(n^2))$ time.
- \bigcirc Does not matter all these are polynomial if T(n) is polynomial, which is good enough for our purposes.

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA** universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA** universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve **DFA Universality**?
We check if **M** has any reachable non-final s

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if **M** has any reachable non-final state.

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if **M** has any reachable non-final state.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA **N**, convert it to an equivalent DFA **M**, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

NFA Universality is known to be PSPACE-Complete and we do not expect a polynomial-time algorithm.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**? Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

NFA Universality is known to be PSPACE-Complete and we do not expect a polynomial-time algorithm.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA **N**, convert it to an equivalent DFA **M**, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

NFA Universality is known to be PSPACE-Complete and we do not expect a polynomial-time algorithm.

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA **N**, convert it to an equivalent DFA **M**, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

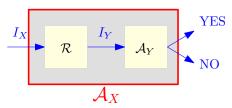
NFA Universality is known to be PSPACE-Complete and we do not expect a polynomial-time algorithm.

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.

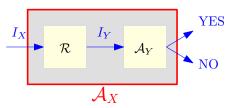


Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.

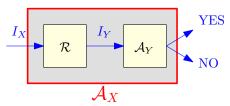


Polynomial-time reductions

We say that an algorithm is *efficient* if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem \boldsymbol{X} to problem \boldsymbol{Y} (we write $\boldsymbol{X} \leq_P \boldsymbol{Y}$), and a poly-time algorithm $\mathcal{A}_{\boldsymbol{Y}}$ for \boldsymbol{Y} , we have a polynomial-time/efficient algorithm for \boldsymbol{X} .



Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- **1** given an instance I_X of X, A produces an instance I_Y of Y
- ② \mathcal{A} runs in time polynomial in $|I_X|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a *Karp reduction*. Most reductions we will need are Karp reductions.Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- Y can be solved in polynomial time.
- **Y** can NOT be solved in polynomial time.
- If Y is hard then X is also hard.
- None of the above.
- All of the above.

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed **Independent Set** \leq_P **Clique**. If **Clique** had an efficient algorithm, so would **Independent Set**!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed **Independent Set** \leq_P **Clique**. If **Clique** had an efficient algorithm, so would **Independent Set**!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed **Independent Set** \leq_P **Clique**. If **Clique** had an efficient algorithm, so would **Independent Set**!

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 ${\mathcal R}$ can write at most ${m p}(|{m I}_X|)$ bits and hence $|{m I}_Y| \leq {m p}(|{m I}_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- 2 \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y That is, show that an algorithm for Y implies an algorithm for X.