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25.1: Recap
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Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
L is in NP
for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem (Cook-Levin)
SAT is NP-Complete.

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 63



Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
L is in NP
for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem (Cook-Levin)
SAT is NP-Complete.

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 63



Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
L is in NP
for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem (Cook-Levin)
SAT is NP-Complete.

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 63



Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
L is in NP
for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem (Cook-Levin)
SAT is NP-Complete.

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 63



Pictorial View

P

NP

NP-C

NP-Hard
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P and NP

Possible scenarios:
1 P = NP.
2 P 6= NP

Question: Suppose P 6= NP. Is every problem in NP \ P also
NP-Complete?

Theorem (Ladner)
If P 6= NP then there is a problem/language X ∈ NP \ P such that
X is not NP-Complete.
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Today

NP-Completeness of three problems:
3-Color
Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor
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25.2: Circuit SAT
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Circuits

Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

Inputs:

Output: ∧ 1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.
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CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 1?

Claim
CSAT is in NP.

1 Certificate: Assignment to input variables.
2 Certifier: Evaluate the value of each gate in a topological sort of

DAG and check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem
SAT ≤P 3SAT ≤P CSAT.

Theorem
CSAT ≤P SAT ≤P 3SAT.
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Converting a CNF formula into a Circuit
3SAT ≤P CSAT

Given 3CNF formula ϕ with n variables and m clauses, create a
Circuit C .

Inputs to C are the n boolean variables x1, x2, . . . , xn

Use NOT gate to generate literal ¬xi for each variable xi

For each clause (`1 ∨ `2 ∨ `3) use two OR gates to mimic
formula
Combine the outputs for the clauses using AND gates to obtain
the final output
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Example
3SAT ≤P CSAT

ϕ =
(

x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)
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Converting a circuit into a CNF formula
Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.
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The other direction: CSAT ≤P 3SAT

1 Now: CSAT ≤P SAT
2 More “interesting” direction.

Chan, Har-Peled, Hassanieh (UIUC) CS374 14 Spring 2019 14 / 63



Converting a circuit into a CNF formula
Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.
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Converting a circuit into a CNF formula
Write a sub-formula for each variable that is true if the var is computed correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xj
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for
each variable that is true if the
var is computed correctly.
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Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk
xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf ) ∧ (¬xi ∨ ¬xf )
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd
xa = 1 xa
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Converting a circuit into a CNF formula
Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨¬xi ∨¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨ xh) ∧ (xj ∨¬xg ∨¬xh)
∧ (xi ∨ xf ) ∧ (¬xi ∨ ¬xf )
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨¬xa ∨¬xb) ∧ (¬xd)∧xa

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.
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Reduction: CSAT ≤P SAT

1 For each gate (vertex) v in the circuit, create a variable xv
2 Case ¬: v is labeled ¬ and has one incoming edge from u (so

xv = ¬xu). In SAT formula generate, add clauses (xu ∨ xv),
(¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv)

both true.
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Reduction: CSAT ≤P SAT
Continued...

1 Case ∨: So xv = xu ∨ xw . In SAT formula generated, add
clauses (xv ∨ ¬xu), (xv ∨ ¬xw), and (¬xv ∨ xu ∨ xw). Again,
observe that

(
xv = xu ∨ xw

)
is true ⇐⇒

(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.
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Reduction: CSAT ≤P SAT
Continued...

1 Case ∧: So xv = xu ∧ xw . In SAT formula generated, add
clauses (¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨ ¬xu ∨ ¬xw).
Again observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.
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Reduction: CSAT ≤P SAT
Continued...

1 If v is an input gate with a fixed value then we do the following.
If xv = 1 add clause xv . If xv = 0 add clause ¬xv

2 Add the clause xv where v is the variable for the output gate
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Correctness of Reduction

Need to show circuit C is satisfiable iff ϕC is satisfiable
⇒ Consider a satisfying assignment a for C

1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies ϕC (exercise)
⇐ Consider a satisfying assignment a for ϕC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C
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List of NP-Complete Problems to Remember

Problems
1 SAT
2 3SAT
3 CircuitSAT
4 Independent Set
5 Clique
6 Vertex Cover
7 Hamilton Cycle and Hamilton Path in both directed and

undirected graphs
8 3Color and Color
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25.3: NP-Completeness of Graph
Coloring
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Graph Coloring

Problem: Graph Coloring
Instance: G = (V ,E): Undirected graph, integer k.
Question: Can the vertices of the graph be colored
using k colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring
Instance: G = (V ,E): Undirected graph.
Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring
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Graph Coloring

1 Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G.

2 G can be partitioned into k independent sets iff G is k-colorable.
3 Graph 2-Coloring can be decided in polynomial time.
4 G is 2-colorable iff G is bipartite!
5 There is a linear time algorithm to check if G is bipartite using

BFS (we saw this earlier).
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25.3.1: Problems related to graph coloring
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Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables needed
at the same time are not assigned to the same register

Interference Graph
Vertices are variables, and there is an edge between two vertices, if
the two variables are “live” at the same time.

Observations
[Chaitin] Register allocation problem is equivalent to coloring
the interference graph with k colors
Moreover, 3-COLOR ≤P k-Register Allocation, for any
k ≥ 3
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Class Room Scheduling

1 Given n classes and their meeting times, are k rooms sufficient?
2 Reduce to Graph k-Coloring problem
3 Create graph G

a node vi for each class i
an edge between vi and vj if classes i and j conflict

4 Exercise: G is k-colorable iff k rooms are sufficient.
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Frequency Assignments in Cellular Networks

1 Cellular telephone systems that use Frequency Division Multiple
Access (FDMA) (example: GSM in Europe and Asia and AT&T
in USA)

Breakup a frequency range [a, b] into disjoint bands of
frequencies [a0, b0], [a1, b1], . . . , [ak, bk]
Each cell phone tower (simplifying) gets one band
Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

2 Problem: given k bands and some region with n towers, is there
a way to assign the bands to avoid interference?

3 Can reduce to k-coloring by creating interference/conflict graph
on towers.
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25.4: Showing hardness of 3
COLORING
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3 color this gadget.
Clicker question

You are given three colors: red, green and blue. Can the following
graph be three colored in a valid way (assuming the two nodes are
already colored as indicated).

(A) Yes.
(B) No.

Chan, Har-Peled, Hassanieh (UIUC) CS374 34 Spring 2019 34 / 63



3 color this gadget II
Clicker question

You are given three colors: red, green and blue. Can the following
graph be three colored in a valid way (assuming the two nodes are
already colored as indicated).

(A) Yes.
(B) No.
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3-Coloring is NP-Complete

3-Coloring is in NP.
Certificate: for each node a color from {1, 2, 3}.
Certifier: Check if for each edge (u, v), the color of u is
different from that of v .

Hardness: We will show 3-SAT ≤P 3-Coloring.
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Reduction Idea

1 ϕ: Given 3SAT formula (i.e., 3CNF formula).
2 ϕ: variables x1, . . . , xn and clauses C1, . . . ,Cm.
3 Create graph Gϕ s.t. Gϕ 3-colorable ⇐⇒ ϕ satisfiable.

encode assignment x1, . . . , xn in colors assigned nodes of Gϕ.
create triangle with node True, False, Base
for each variable xi two nodes vi and v̄i connected in a triangle
with common Base
If graph is 3-colored, either vi or v̄i gets the same color as True.
Interpret this as a truth assignment to vi
Need to add constraints to ensure clauses are satisfied (next
phase)
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Need to add constraints to ensure clauses are satisfied (next
phase)
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Figure

v1
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Clause Satisfiability Gadget

1 For each clause Cj = (a ∨ b ∨ c), create a small gadget graph
gadget graph connects to nodes corresponding to a, b, c
needs to implement OR

2 OR-gadget-graph:
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OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output
node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.

Chan, Har-Peled, Hassanieh (UIUC) CS374 40 Spring 2019 40 / 63



Reduction

create triangle with nodes True, False, Base
for each variable xi two nodes vi and v̄i connected in a triangle
with common Base
for each clause Cj = (a ∨ b ∨ c), add OR-gadget graph with
input nodes a, b, c and connect output node of gadget to both
False and Base

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base
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Reduction

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

Claim
No legal 3-coloring of above graph (with coloring of nodes T , F ,B
fixed) in which a, b, c are colored False. If any of a, b, c are colored
True then there is a legal 3-coloring of above graph.
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3 coloring of the clause gadget
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Reduction Outline

Example
ϕ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)

or
gates

Palette

Variable and nega-

tions have com-

plemantory colors.

Literals get colors

T or F.

T F

B
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Correctness of Reduction

ϕ is satisfiable implies Gϕ is 3-colorable
if xi is assigned True, color vi True and v̄i False
for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is
colored True. OR-gadget for Cj can be 3-colored such that
output is True.

Gϕ is 3-colorable implies ϕ is satisfiable
if vi is colored True then set xi to be True, this is a legal truth
assignment
consider any clause Cj = (a ∨ b ∨ c). it cannot be that all
a, b, c are False. If so, output of OR-gadget for Cj has to be
colored False but output is connected to Base and False!
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Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F
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25.5: Proof of Cook-Levin
Theorem

Chan, Har-Peled, Hassanieh (UIUC) CS374 47 Spring 2019 47 / 63



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L ∈ NP, L ≤P SAT

Difficulty: Infinite number of languages in NP. Must simultaneously
show a generic reduction strategy.
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High-level Plan

What does it mean that L ∈ NP?
L ∈ NP implies that there is a non-deterministic TM M and
polynomial p() such that

L = {x ∈ Σ∗ | M accepts x in at most p(|x|) steps}

We will describe a reduction fM that depends on M, p such that:
fM takes as input a string x and outputs a SAT formula fM(x)
fM runs in time polynomial in |x|
x ∈ L if and only if fM(x) is satisfiable
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Plan continued

x fM(x)
fM

poly-time computable

fM(x) is satisfiable if and only if x ∈ L
fM(x) is satisfiable if and only if nondeterministic M accepts x in
p(|x|) steps

BIG IDEA
fM(x) will express “M on input x accepts in p(|x|) steps”
fM(x) will encode a computation history of M on x

fM(x) will be a carefully constructed CNF formula s.t if we have a
satisfying assignment to it, then we will be able to see a complete
accepting computation of M on x down to the last detail of where
the head is, what transition is chosen, what the tape contents are, at
each step.
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Tableau of Computation

M runs in time p(|x|) on x. Entire computation of M on x can be
represented by a “tableau”

time

tape cell position

0

1

2

3

1 2 3 p(|x|)

p(|x|)

state q0

state q2

1 0 0 1

0 0 0 1

blanks

blanks

4

Row i gives contents of all cells at time i
At time 0 tape has input x followed by blanks
Each row long enough to hold all cells M might ever have scanned.
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Variable of fM(x)

Four types of variable to describe computation of M on x
T(b, h, i) : tape cell at position h holds symbol b at time i .
1 ≤ h ≤ p(|x|), b ∈ Γ, 0 ≤ i ≤ p(|x|)

H(h, i): read/write head is at position h at time i .
1 ≤ h ≤ p(|x|), 0 ≤ i ≤ p(|x|)

S(q, i) state of M is q at time i q ∈ Q, 0 ≤ i ≤ p(|x|)

I(j , i) instruction number j is executed at time i
M is non-deterministic, need to specify transitions in some way.
Number transitions as 1, 2, . . . , ` where jth transition is
< qj , bj , q′

j , b ′
j , dj > indication (q′

j , b ′
j , dj) ∈ δ(qj , bj),

direction dj ∈ {−1, 0, 1}.
Number of variables is O(p(|x|)2) where constant in O() hides
dependence on fixed machine M.
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Notation

Some abbreviations for ease of notation∧m
k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of

x1, x2, . . . , xm is true. Can be converted to CNF form
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Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula. Described in subsequent slides.
Property: fM(x) is satisfied iff there is a truth assignment to the
variables that simultaneously satisfy ϕ1, . . . , ϕ8.
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ϕ1

ϕ1 asserts (is true iff) the variables are set T/F indicating that M
starts in state q0 at time 0 with tape contents containing x followed
by blanks.

Let x = a1a2 . . . an

ϕ1 = S(q, 0) state at time 0 is q0∧
and∧n

h=1 T(ah, h, 0) at time 0 cells 1 to n have a1 to an∧p(|x|
h=n+1)T(B, h, 0) at time 0 cells n + 1 to p(|x|) have blanks∧

and

H(1, 0) head at time 0 is in position 1
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ϕ2

ϕ2 asserts M in exactly one state at any time i

ϕ2 =
∧p(|x|)

i=0
(
⊕(S(q0, i), S(q1, i), . . . , S(q|Q|, i))

)
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ϕ3

ϕ3 asserts that each tape cell holds a unique symbol at any given
time.

ϕ3 =

p(|x|)∧
i=0

p(|x|)∧
h=1

⊕(T(b1, h, i),T(b2, h, i), . . . ,T(b|Γ|, h, i))

For each time i and for each cell position h exactly one symbol
b ∈ Γ at cell position h at time i
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ϕ4

ϕ4 asserts that the read/write head of M is in exactly one position
at any time i

ϕ4 =

p(|x|)∧
i=0

(⊕ (H(1, i),H(2, i), . . . ,H(p(|x|), i)))
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ϕ5

ϕ5 asserts that M accepts
Let qa be unique accept state of M
without loss of generality assume M runs all p(|x|) steps

ϕ5 = S(qa, p(|x|))

State at time p(|x|) is qa the accept state.

If we don’t want to make assumption of running for all steps

ϕ5 =

p(|x|)∨
i=1

S(qa, i)

which means M enters accepts state at some time.
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ϕ6

ϕ6 asserts that M executes a unique instruction at each time

ϕ6 =

p(|x|)∧
i=0

⊕(I(1, i), I(2, i), . . . , I(m, i))

where m is max instruction number.

Chan, Har-Peled, Hassanieh (UIUC) CS374 60 Spring 2019 60 / 63



ϕ7

ϕ7 ensures that variables don’t allow tape to change from one
moment to next if the read/write head was not there.

“If head is not at position h at time i then at time i + 1 the symbol
at cell h must be unchanged”

ϕ7 =
∧

i

∧
h

∧
b 6=c

(
H(h, i) ⇒ T(b, h, i)

∧
T(c, h, i + 1)

)

since A ⇒ B is same as ¬A ∨ B, rewrite above in CNF form

ϕ7 =
∧

i

∧
h

∧
b 6=c

(H(h, i) ∨ ¬T(b, h, i) ∨ ¬T(c, h, i + 1))
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ϕ8

ϕ8 asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < qj , bj , q′
j , b ′

j , dj >

ϕ8 =
∧

i
∧

j(I(j , i) ⇒ S(qj , i)) If instr j executed at time i then state must be correct to do j∧∧
i
∧

j(I(j , i) ⇒ S(q′
j , i + 1)) and at next time unit, state must be the proper next state for instr j∧∧

i
∧

h
∧

j [(I(j , i)
∧

H(h, i)) ⇒ T(bj , h, i)] if j was executed and head was at

position h, then cell h has correct symbol for j
∧∧

i
∧

j
∧

h[(I(j , i) ∧ H(h, i)) ⇒ T(b ′
j , h, i + 1)] if j was done then at time i with

head at h then at next time step symbol b′
j was indeed written in position h

∧∧
i
∧

j
∧

h[(I(j , i) ∧ H(h, i)) ⇒ H(h + dj , i + 1)] and head is moved properly

according to instr j .
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Proof of Correctness

(Sketch)
Given M, x, poly-time algorithm to construct fM(x)
if fM(x) is satisfiable then the truth assignment completely
specifies an accepting computation of M on x
if M accepts x then the accepting computation leads to an
”obvious” truth assignment to fM(x). Simply assign the
variables according to the state of M and cells at each time i .

Thus M accepts x if and only if fM(x) is satisfiable
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