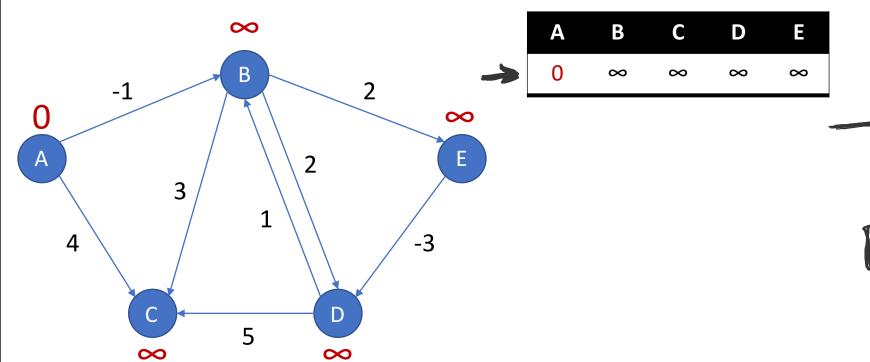
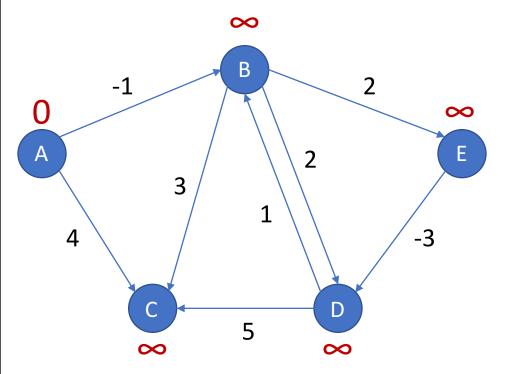
Bellman-Ford Algorithm Example

Initialization:



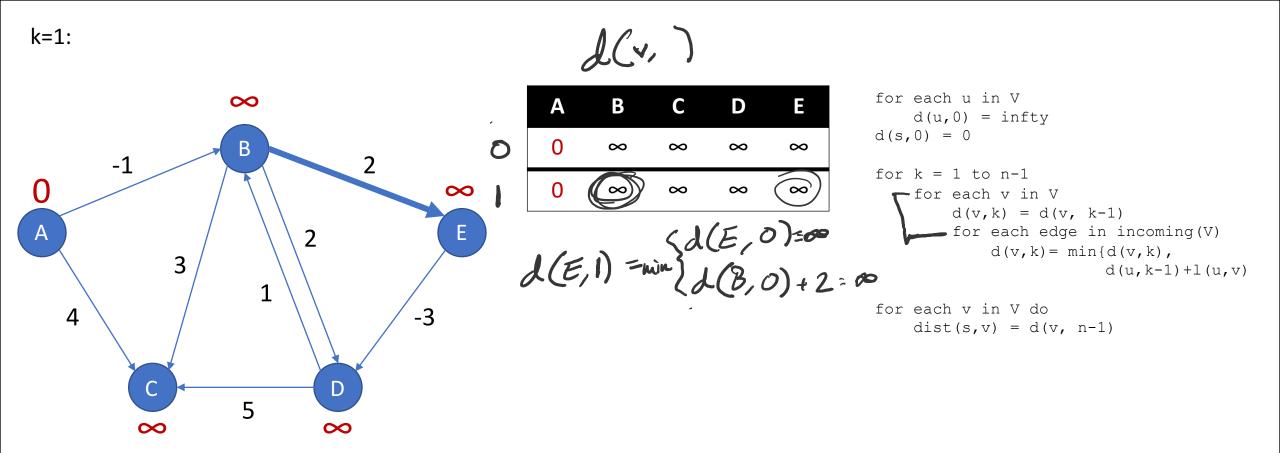


Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞

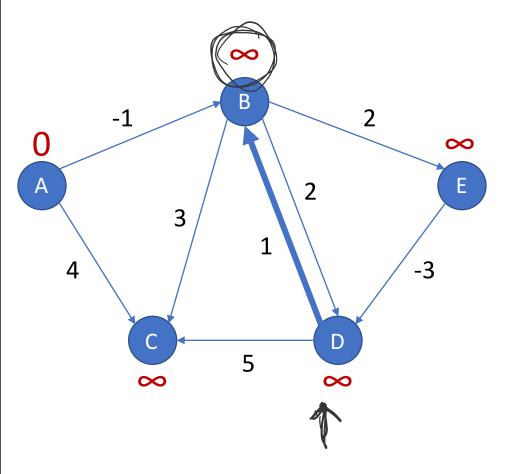
```
for each u in V
        d(u,0) = infty
d(s,0) = 0

for k = 1 to n-1
    for each v in V
        d(v,k) = d(v, k-1)
        for each edge in incoming(V)
        d(v,k) = min{d(v,k), l)
        d(u,k-1)+l(u,v)
```

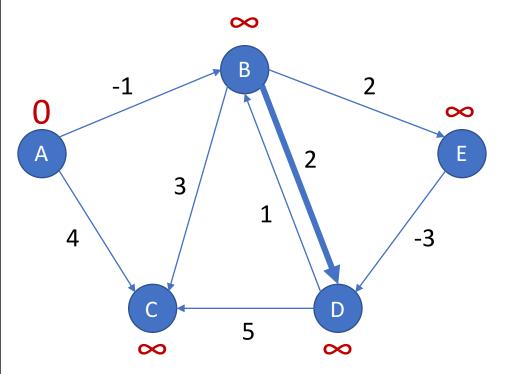
```
for each v in V do
dist(s,v) = d(v, n-1)
```



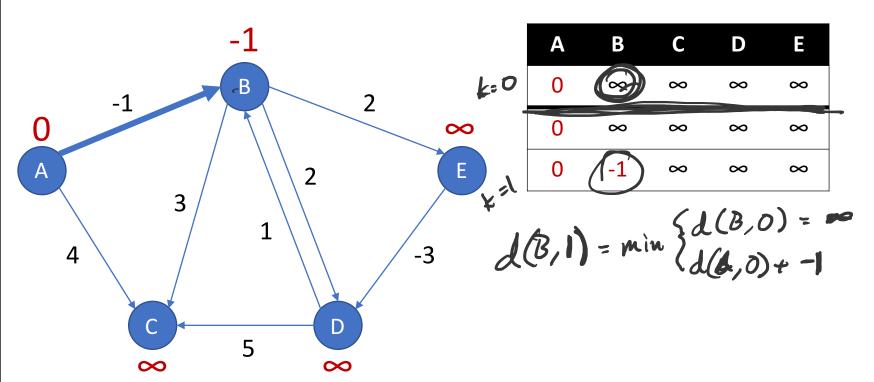
k=1:

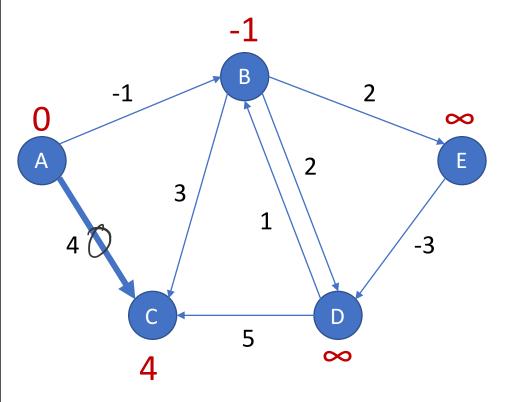


Α	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞

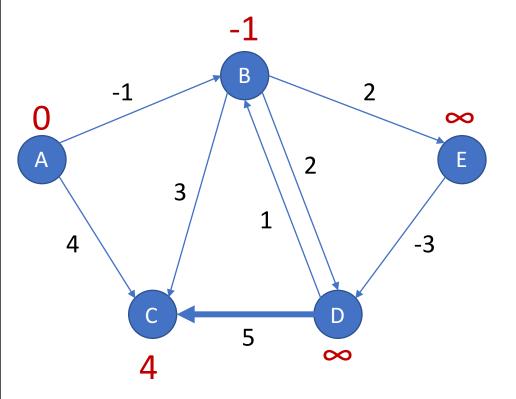


Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞

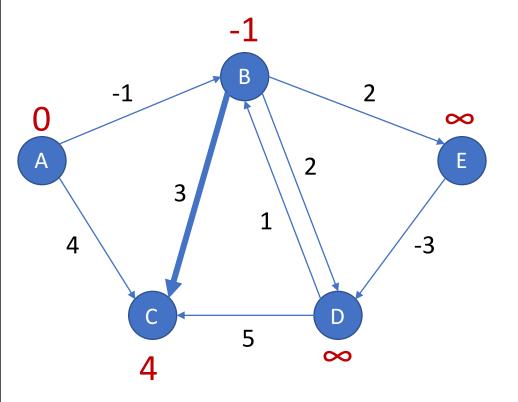




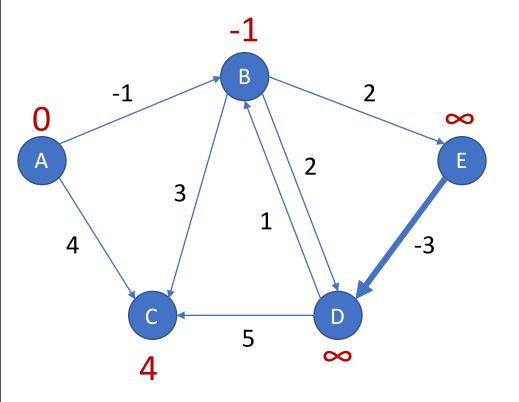
A	В	С	D	Е
0	∞		∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞



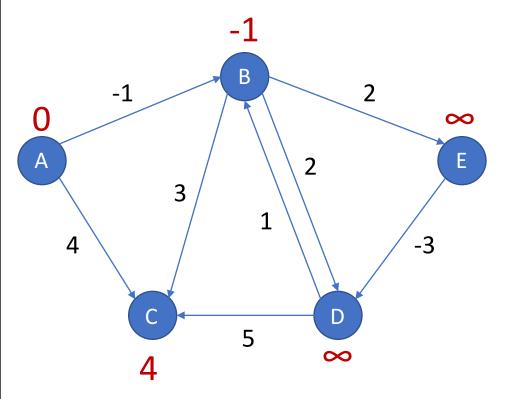
Α	В	С	D	Е
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞



Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞

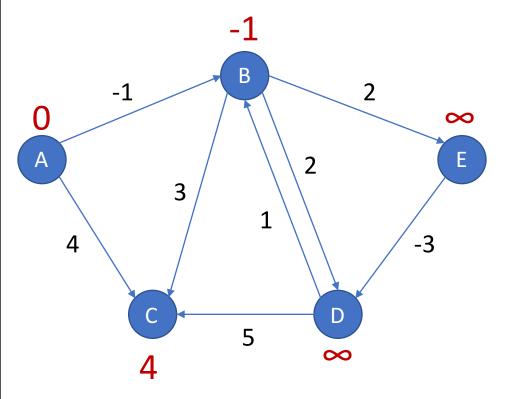


A	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞



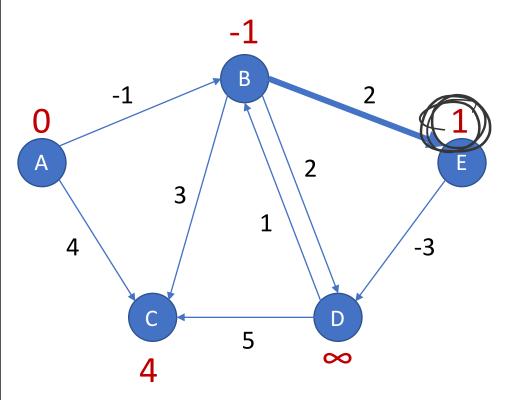
A	В	С	D	E
0	∞	∞	∞	8
0	∞	∞	∞	8
0	-1	∞	∞	8
0	-1	4	∞	∞

Distances assuming all paths lengths are at most 1 edge long.



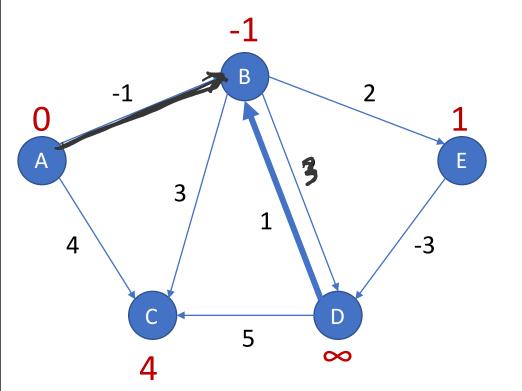
Α	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞

k=2:



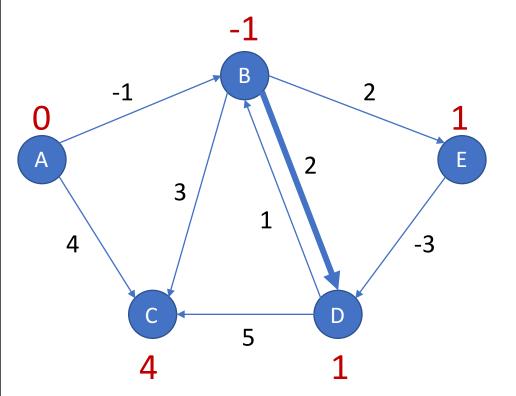
Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	1	4	∞ (
0	-1	4	∞	∞
0	-1	4	∞	1

k=2:



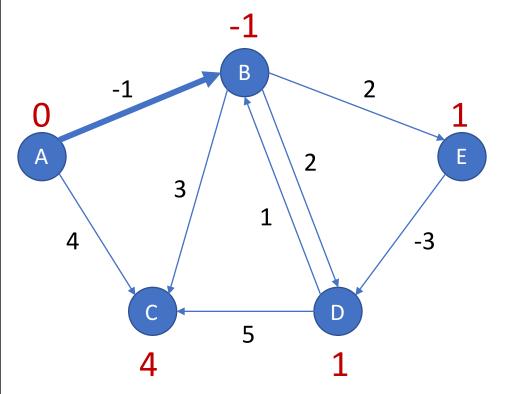
Α	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	1

k=2:



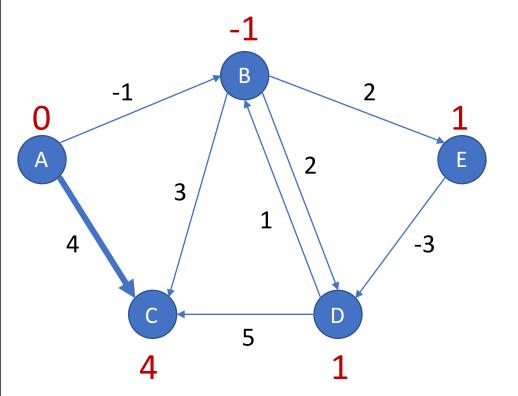
Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1 -1	4	∞ ∞	∞ 1

k=2:



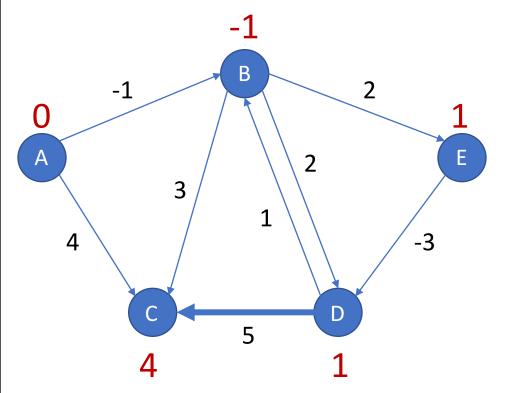
Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	1
0	-1	4	1	1

k=2:



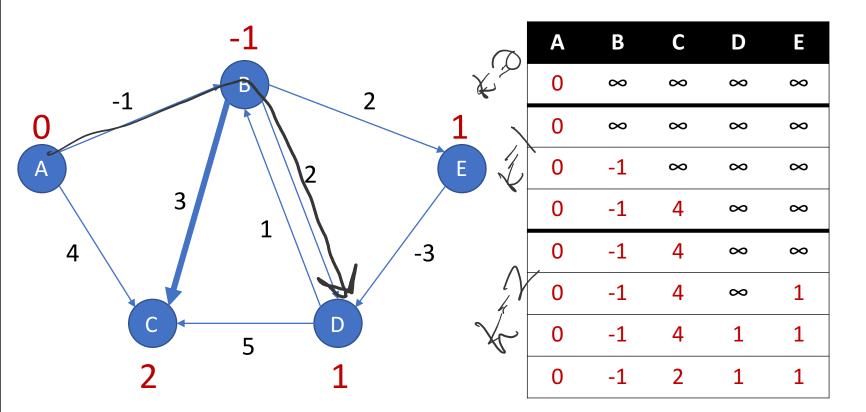
Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	1
0	-1	4	1	1

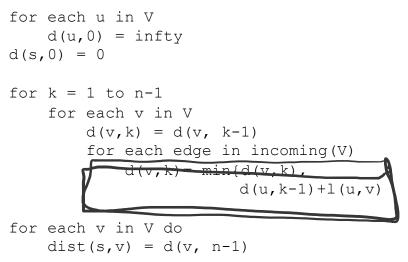
k=2:



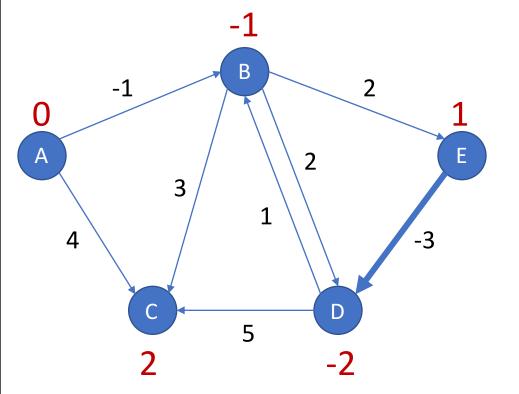
Α	В	С	D	Ε
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	1	4	∞	∞
0	-1			
0	-1	4	∞ ∞	∞

k=2:



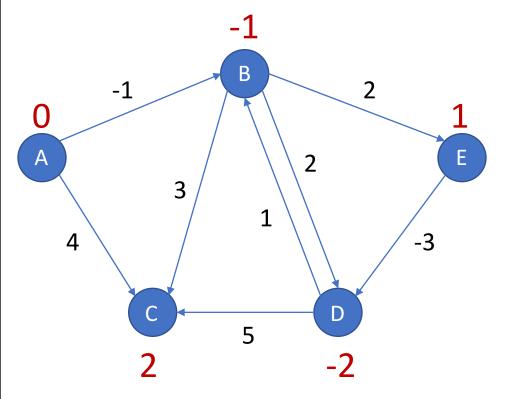


k=2:



Α	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1 -1	4	∞ ∞	∞ 1
0	-1	4	∞	1

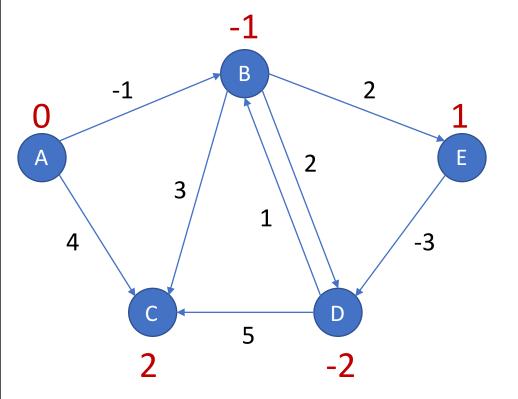
k=2:



Α	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1 -1	4	∞ ∞	∞ 1
0	-1	4	∞	1

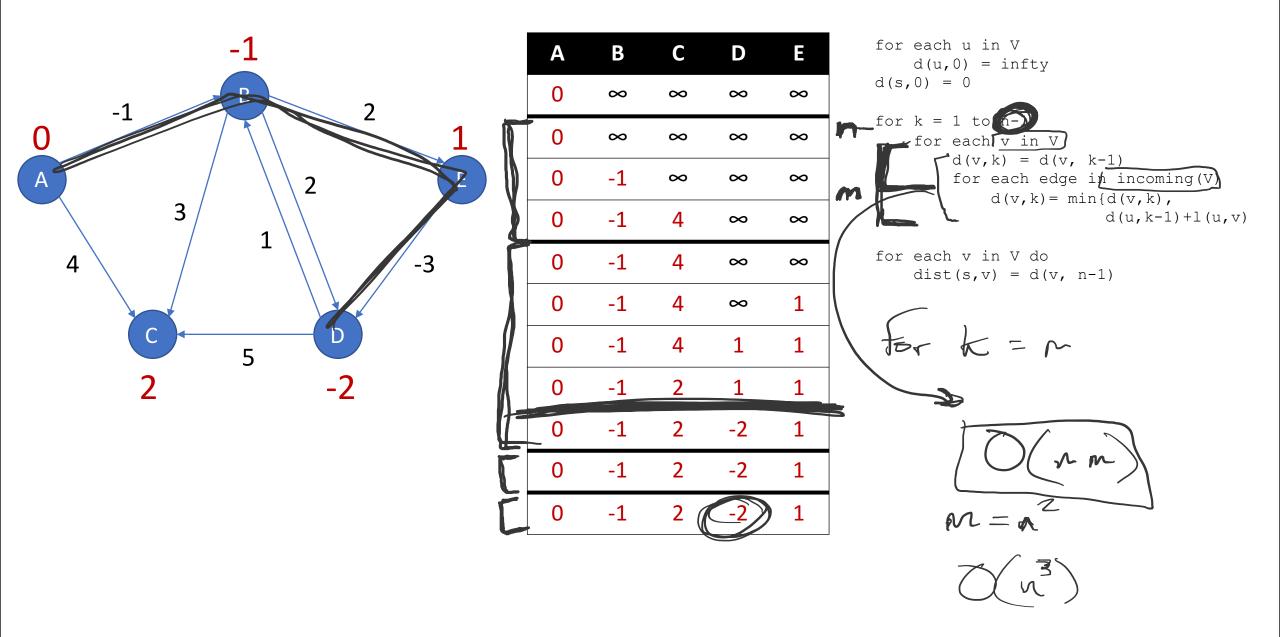
Distances assuming all paths lengths are at most **2** edges long.

k=3:



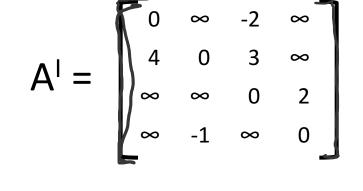
Α	В	С	D	E
0	∞	∞	∞	∞
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	∞
0	-1	4	∞	1
0	-1	4	1	1
0	-1	2	1	1
0	-1	2	-2	1
0	-1	2	-2	1

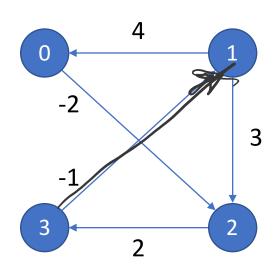
k=4:



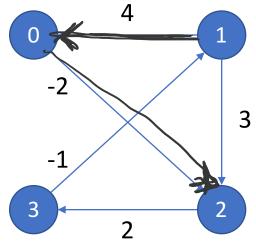
Floyd-Warshall Algorithm Example

Initialization:

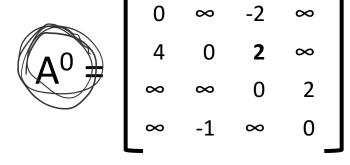




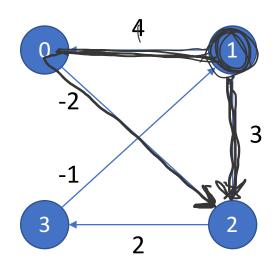
k = 0:



$$A^{\dagger} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$



k =0:



for
$$i = 1$$
 to n
for $j = 1$ to n

$$d(i,j,0) = 1(i,j)$$
for $k = 0$ to n
for $i = 0$ to n

$$for $j = 0$ to n

$$d(v,k) = \min\{d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)\}$$
for $i = 0$ to n
if $dist(i,i,n) < 0$

$$print("Negative cycle detected!")$$$$

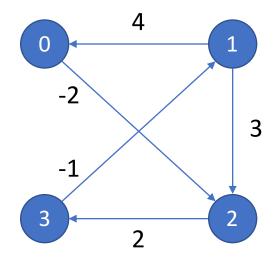
$$A^{I} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$A^{0} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & \infty & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$d(2,3,0) = min \begin{cases} d(2,3,I) = 2 \\ d(2,0,I) + d(0,3,I) = \infty + \infty = \infty \end{cases}$$

$$(1,2,0) = min \begin{cases} d(1,2,I) = 3 \\ 0 & \infty \end{cases}$$

k = 1:

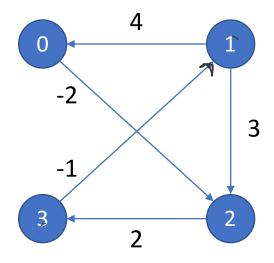


$$A^{\dagger} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$A^{0} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \bigcirc & 0 \end{bmatrix} \qquad A^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ 3 & -1 & 1 & 0 \end{bmatrix}$$

$$A^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \mathbf{3} & -1 & \mathbf{1} & 0 \end{bmatrix}$$

k = 1:



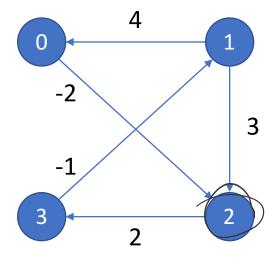
$$A^{\dagger} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$A^{0} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & \mathbf{2} & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix} \qquad A^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \hline \mathbf{3} & -1 & \mathbf{1} & 0 \end{bmatrix}$$

$$\Delta^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \hline 3 & -1 & 1 & 0 \end{bmatrix}$$

$$d(3,0,1) = min \left\{ d(3,1,0) + d(1,0,0) = (-1) + (4) = 3 \right\}$$

$$k = 2$$
:



$$A^{I} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$A^{0} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & \mathbf{2} & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix} \qquad A^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \mathbf{3} & -1 & \mathbf{1} & 0 \end{bmatrix}$$

$$A^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \mathbf{3} & -1 & \mathbf{1} & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & \infty & -2 & \mathbf{0} \\ 4 & 0 & 2 & \mathbf{4} \\ \infty & \infty & 0 & 2 \\ 3 & -1 & 1 & 0 \end{bmatrix}$$

k = 3:

for i = 1 to n

$$A^{\dagger} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$A^{0} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & \mathbf{2} & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix}$$

$$A^{0} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & \mathbf{2} & \infty \\ \infty & \infty & 0 & 2 \\ \infty & -1 & \infty & 0 \end{bmatrix} \qquad A^{1} = \begin{bmatrix} 0 & \infty & -2 & \infty \\ 4 & 0 & 2 & \infty \\ \infty & \infty & 0 & 2 \\ \mathbf{3} & -1 & \mathbf{1} & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & \infty & -2 & 0 \\ 4 & 0 & 2 & 4 \\ \infty & \infty & 0 & 2 \\ 3 & -1 & 1 & \theta \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & \infty & -2 & 0 \\ 4 & 0 & 2 & 4 \\ \infty & \infty & 0 & 2 \\ 3 & -1 & 1 & 0 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & -1 & -2 & 0 \\ 4 & 0 & 2 & 4 \\ 5 & 1 & 0 & 2 \\ 3 & -1 & 1 & 0 \end{bmatrix}$$