Algorithms & Models of Computation
CS/ECE 374 B, Fall 2020

Regular Languages and
Expressions

Lecture 2
Thursday, August 27, 2020

ATEXed: August 27, 2020 12:58

Fall 2020 1/16

Miller, Kani, Har-Peled (UIUC) CS/ECE 374

Part |

Regular Languages

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 2 Fall 2020 2/16

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

Q 0 is a regular language.
@ {e€} is a regular language.

@ {a} is a regular language for each a € X. Interpreting a as
string of length 1.

Miller, Kani, Har-Peled (UIUC)

CS/ECE 374

Fall 2020 3/16

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

Q 0 is a regular language.
@ {e€} is a regular language.

@ {a} is a regular language for each a € X. Interpreting a as
string of length 1.

Q If Ly, Ly are regular then Ly U L, is regular.

Miller, Kani, Har-Peled (UIUC)

CS/ECE 374

Fall 2020 3/16

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

Q 0 is a regular language.
@ {e€} is a regular language.

@ {a} is a regular language for each a € X. Interpreting a as
string of length 1.

Q If Ly, Ly are regular then Ly U L, is regular.
Q If Ly, Ly are regular then L;L, is regular.

Miller, Kani, Har-Peled (UIUC)

CS/ECE 374

Fall 2020 3/16

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

Q 0 is a regular language.
@ {e€} is a regular language.

@ {a} is a regular language for each a € X. Interpreting a as
string of length 1.

Q If Ly, Ly are regular then Ly U L, is regular.
Q If Ly, Ly are regular then L;L, is regular.

O If Lis regular, then L* = U,>oL" is regular.
The -* operator name is Kleene star.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374

Fall 2020 3/16

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet X is defined
inductively as:

Q 0 is a regular language.
@ {e€} is a regular language.

@ {a} is a regular language for each a € X. Interpreting a as
string of length 1.

Q If Ly, Ly are regular then Ly U L, is regular.

Q If Ly, Ly are regular then L;L, is regular.

O If Lis regular, then L* = U,>oL" is regular.
The -* operator name is Kleene star.

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374

Fall 2020

Some simple regular languages
If w is a string then L = {w} is regular. \

Example: {aba} or {abbabbab}. Why?

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 4/16

Some simple regular languages
If w is a string then L = {w} is regular. \

Example: {aba} or {abbabbab}. Why?

Every finite language L is regular. l

Examples: L = {a, abaab, aba}. L = {w | |w| < 100}. Why?

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 4/16

More Examples

e {w | wis a keyword in Python program}

o {w | wis a valid date of the form mm/dd/yy}

o {w | w describes a valid Roman numeral}
{0,010, 11,1V, V, VI, VIL, VIIL IX, X, X1, . . .}.

o {w | w contains "CS374" as a substring}.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 5/16

Part 1l

Regular Expressions

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 6/16

Regular Expressions

A way to denote regular languages

@ simple patterns to describe related strings

@ useful in

text search (editors, Unix/grep, emacs)

compilers: lexical analysis

compact way to represent interesting/useful languages
dates back to 50's: Stephen Kleene

who has a star names after him.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Inductive Definition

A regular expression r over an alphabet X is one of the following:
Base cases:

@ () denotes the language 0
@ € denotes the language {€}.
@ a denote the language {a}.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Inductive Definition

A regular expression r over an alphabet X is one of the following:
Base cases:

@ () denotes the language 0
@ € denotes the language {€}.
@ a denote the language {a}.

Inductive cases: If r; and r; are regular expressions denoting
languages R; and R; respectively then,

@ (r1 + r2) denotes the language R; U R,
@ (rirp) denotes the language Ry R»
@ (r1)* denotes the language Ry

Miller, Kani, Har-Peled (UIUC) CS/ECE 374

Fall 2020

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

O regular (0 denotes 0

{e} regular € denotes {€}

{a} regular for a € X a denote {a}

R; U R, regular if both are r1 + ro denotes Ry U Ry
R;1 R; regular if both are riry denotes R Ry

R* is regular if R is r* denote R*

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 9/16

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 10/16

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions ry and ry are equivalent if
L(I’l) = L(I’z).

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 10/16

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions ry and ry are equivalent if
L(I’l) = L(I’z).

@ Omit parenthesis by adopting precedence order: *, concatenate,
+.

Example: r*'s +t = ((r*)s) + t

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 10/16

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions ry and ry are equivalent if
L(I’l) = L(I’z).

@ Omit parenthesis by adopting precedence order: *, concatenate,
+.

Example: r*'s +t = ((r*)s) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 10/16

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions ry and ry are equivalent if
L(I’l) = L(I’z).

@ Omit parenthesis by adopting precedence order: *, concatenate,
+.

Example: r*'s +t = ((r*)s) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t.

@ Superscript 4. For convenience, define r* = rr*. Hence if
L(r) = R then L(r*) = R.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 10/16

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions ry and rp are equivalent if

L(I’l) = L(I’z).

Omit parenthesis by adopting precedence order: *, concatenate,
+.
Example: r*'s +t = ((r*)s) + t

Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t.

Superscript +. For convenience, define r* = rr*. Hence if
L(r) = R then L(r*) = R.

Other notation: r + s, r Uss, r|s all denote union. rs is
sometimes written as res.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 10/16

Skills

@ Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 11/16

Skills

@ Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

@ Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 11/16

Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
e (0+1)*001(0 + 1)*:

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
e (0+ 1)*001(0 + 1)*: strings with 001 as substring

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 4 1)*: set of all strings over {0,1}
e (0+ 1)*001(0 + 1)*: strings with 001 as substring
e 0* + (0*10*10*10*)*:

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}
e (0+ 1)*001(0 + 1)*: strings with 001 as substring
e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

e (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e (0:

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

e (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

e (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

e (e+1)(01)*(e + 0):

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

e (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

e (e +1)(01)*(e + 0): alternating 0s and 1s. Alternatively, no
two consecutive Os and no two consecutive 1s

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

e (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

e (e +1)(01)*(e + 0): alternating 0s and 1s. Alternatively, no
two consecutive Os and no two consecutive 1s

o (e+0)(1+10)~

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

e (0+ 1)*001(0 + 1)*: strings with 001 as substring

e 0* 4+ (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

e (e +1)(01)*(e + 0): alternating 0s and 1s. Alternatively, no
two consecutive Os and no two consecutive 1s

@ (e + 0)(1 + 10)*: strings without two consecutive Os.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 12/16

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 13 /16

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring

one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 13 /16

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring

one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 13 /16

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's

one answer: 0* + (0*10*10*)*

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 13 /16

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring

one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's

one answer: 0* 4+ (0*10*10*)*
@ bitstrings with an odd number of 1's

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 13 /16

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's
one answer: 0* 4+ (0*10*10*)*

@ bitstrings with an odd number of 1's
one answer: rlr where r is solution to previous part

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* 4+ (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: rlr where r is solution to previous part

@ bitstrings that do not contain 01 as a substring

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* 4+ (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: rlr where r is solution to previous part

@ bitstrings that do not contain 01 as a substring
one answer:1*0*

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* 4+ (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: rlr where r is solution to previous part
@ bitstrings that do not contain 01 as a substring
one answer:1*0*

@ bitstrings that do not contain 011 as a substring

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* 4+ (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: rlr where r is solution to previous part

@ bitstrings that do not contain 01 as a substring
one answer:1*0*

@ bitstrings that do not contain 011 as a substring
one answer:1*0*(100*)*(1 + ¢)

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Creating regular expressions

@ bitstrings with the pattern 001 or the pattern 100 occurring as
a substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* 4+ (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: rlr where r is solution to previous part

@ bitstrings that do not contain 01 as a substring
one answer:1*0*

@ bitstrings that do not contain 011 as a substring
one answer:1*0*(100*)*(1 + ¢)

@ Hard: bitstrings with an odd number of 1s and an odd number
of Os.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 13 Fall 2020 13 /16

Bit strings with odd number of Os and 1s

The regular expression is

(00 + 11)"(01 + 10)
(00 + 11 +(01 + 10)(00 + 11)*(01 + 10))*

(Solved using techniques to be presented in the following lectures...)

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 14 /16

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(rr*) = L(r*)

P (r*)* — r*

o rr*=r*r

o (rs)*r = r(sr)*

o(r+s)=(rs)y=(+s)=(+s)=...

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 15/16

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(rr*) = L(r*)

P (r*)* — r*

o rr*=r*r

o (rs)*r = r(sr)*

o(r+s)=(rs)y=(+s)=(+s)=...

Question: How does on prove an identity?

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(rr*) = L(r*)

P (r*)* — r*

o rr*=r*r

o (rs)*r = r(sr)*

o(r+s)=(rs)y=(+s)=(+s)=...

Question: How does on prove an identity?
By induction. On what?

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(rr*) = L(r*)

P (r*)* — r*

o rr*=r*r

o (rs)*r = r(sr)*

o(r+s)=(rs)y=(+s)=(+s)=...

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 15/16

A non-regular language and other closure

properties

Consider L = {071" | n > 0} = {e, 01,0011, 000111, ...}.

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 16 /16

A non-regular language and other closure

properties

Consider L = {071" | n > 0} = {e, 01,0011, 000111, ...}.

L is not a regular language. \

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 16 /16

A non-regular language and other closure

properties

Consider L = {071" | n > 0} = {e, 01,0011, 000111, ...}.

L is not a regular language. \

How do we prove it?

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 16 /16

A non-regular language and other closure

properties

Consider L = {071" | n > 0} = {e, 01,0011, 000111, ...}.

L is not a regular language. \

How do we prove it?

Other questions:
@ Suppose Ry is regular and R; is regular. Is Ry N Ry regular?
@ Suppose R; is regular is Ry (complement of Ry) regular?

Miller, Kani, Har-Peled (UIUC) CS/ECE 374 Fall 2020 16 /16

	Regular Languages
	Regular Expressions

