CS/ECE 374 A < Fall 2021
+ Homework 1 ey

Due Tuesday, August 31, 2021 at 8pm Central Time

Submit your written solutions electronically to Gradescope as PDF files. Submit
a separate PDF file for each numbered problem. If you plan to typeset your solutions,
please use the ETEX solution template on the course web site. If you must submit scanned
handwritten solutions, please use a black pen on blank white paper and a high-quality
scanner app (or an actual scanner).

Groups of up to three people can submit joint solutions on Gradescope. Exactly one student
in each group should upload the solution and indicate their other group members. All
group members must be already registered on Gradescope.

You are not required to sign up on Gradescope or Piazza with your real name and your
illinois.edu email address; you may use any email address and alias of your choice. However,
to give you credit for the homework, we need to know who Gradescope thinks you are.
Please fill out the web form linked from the course web page.

You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

Written homework will be due every Tuesday at 8pm, except in weeks with exams. In
addition, guided problems sets on PrairieLearn are due every Monday at 8pm; each student
must do these individually. In particular, Guided Problem Set 1 is due Monday, August 30!
Each Guided Problem Set has the same weight as one numbered homework problem.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

1. Consider the following pair of mutually recursive functions on strings:

€ ifw=¢e

odds(x) ifw=ax

€ ifw=e¢
odds(w) :=

a-evens(x) ifw=ax

evens(w) := {

For example, the following derivation shows that evens(PARITY) = AIY:

evens(PARITY) = odds(ARITY)
= A-evens(RITY)
= A-odds(ITY)
=A-(I-evens(TY))
=A-(I-odds(Y))
=A-(I-(Y-evens(e)))
=A-(I-(Y-¢€)))
= AIY

A similar derivation implies that odds(PARITY) = PRT.

(@) Give a self-contained recursive definition for the function evens that does not involve
the function odds.

(b) Prove the following identity for all strings w and x:

evens(w) ¢ evens(x) if |w| is even,
evens(w ¢ x) =
evens(w) ¢ odds(x) if |w| is odd.

You may assume without proof any result proved in class, in lab, or in the lecture notes.
Otherwise, your proofs must be formal and self-contained, and they must invoke the formal
definitions of concatenation ¢, length |-|, and the evens and odds functions. Do not appeal
to intuition!

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

2. Consider the following recursive function that perfectly shuffles two strings together:

Z ifw=e
shuffle(w, z) :=

a - shuffle(z,x) if w=ax
For example, the following derivation shows that shuffle(PRT,ALY) = PARITY:

shuffle(PRT,AIY) = P - shuffle(AIY,RT)
=P - (A-shuffle(RT, IY))
=P-(A-(R-shuffle(IY, T)))
=P-(A-(R-(I-shuffle(T,Y))))
=P-(A-(R-(I-(T-shuffle(Y,¢)))))
=P-(A-(R-(T-(T-(Y-shuffle(e, £))))))
=P-(A-(R-(I-(T-(Y-¢€)))))
= PARITY

(@) Prove that shuffle(odds(w), evens(w)) = w for every string w.

(b) Prove evens(shuffle(w, z)) = 2 for all strings w and z such that |[w| = |z|.

You may assume without proof any result proved in class, in lab, or in the lecture notes.
Otherwise, your proofs must be formal and self-contained, and they must invoke the formal
definitions of concatenation * and the functions shuffle, evens, and odds. Do not appeal to
intuition!

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

Rubrics

We will announce standard grading rubrics for common question types, which we will apply on all
homeworks and exams. However, please remember that some homework and exam questions may
fall outside the scope of these standard rubrics.

Standard induction rubric. For problems worth 10 points:

+ 1for explicitly considering an arbitrary object.
+ 2 for avalid strong induction hypothesis

— Deadly Sin! No credit here for stating a weak induction hypothesis, unless the rest of the
proof is absolutely perfect.

+

2 for explicit exhaustive case analysis

— No credit here if the case analysis omits an infinite number of objects. (For example: all
odd-length palindromes.)

— —1if the case analysis omits an finite number of objects. (For example: the empty string.)
— —1 for making the reader infer the case conditions. Spell them out!

— No penalty if the cases overlap (for example: even length at least 2, odd length at least 3,
and length at most 5.)

+

1 for cases that do not invoke the inductive hypothesis (“base cases”)

— No credit here if one or more “base cases” are missing.

+

2 for correctly applying the stated inductive hypothesis

— No credit here for applying a different inductive hypothesis, even if that different inductive
hypothesis would be valid.

+

2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)

— No credit here if one or more “inductive cases” are missing.

For (sub)problems worth less than 10 points, scale and round to the nearest half-integer.

Solved Problems

Each homework assignment will include at least one fully solved problem, similar to the problems
assigned in that homework, together with the grading rubric we would apply if this problem appeared
on a homework or exam. These model solutions illustrate our recommendations for structure,
presentation, and level of detail in your homework solutions. Of course, the actual content of your
solutions won’t match the model solutions, because your problems are different!

4. For any string w € {0, 1}*, let swap(w) denote the string obtained from w by swapping
the first and second symbols, the third and fourth symbols, and so on. For any string
w € {0,1}*, let swap(w) denote the string obtained from w by swapping the first and
second symbols, the third and fourth symbols, and so on. For example:

swap(10110001101)=0111001001 1.

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

The swap function can be formally defined as follows:

€ ifw=e¢
swap(w) ;=< w fw=0orw=1
ba * swap(x) if w=abx for some a,b € {0,1} and x € {0, 1}*

(@) Prove that [swap(w)| = |w| for every string w.

Solution: Let w be an arbitrary string.
Assume [swap(x)| = |x| for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):

e If w=¢g, then

[swap(w)| = |swap(e))| because w = ¢
= |e] by definition of swap
= |w| because w = ¢

e Ifw=0orw=1, then
|swap(w)| = |w]| by definition of swap

* Finally, if w = abx for some a,b € {0,1} and x € {0,1}* , then

|swap(w)| = |swap(abx))| because w = abx
= |ba * swap(x)| by definition of swap
= |ba| + |swap(x)| because |y * z| = |y| + |2|
= |ba| + |x| by the induction hypothesis
=2+ |x] by definition of |- |
= |ab| + |x| by definition of |- |
=|ab * x| because |y * z| = |y| + |z|
= |abx| by definition of *
= |w| because w = abx

In all cases, we conclude that [swap(w)| = |w]|.

for full credit.

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary

CS/ECE 374 A

Homework 1 (due August 31) Fall 2021

(b) Prove that swap(swap(w)) = w for every string w.

Solution: Let w be an arbitrary string.
Assume swap(swap(x)) = x for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):

* If w=¢g, then

swap(swap(w)) = swap(swap(¢)) because w = ¢
= swap(e) by definition of swap
=¢ by definition of swap
=w because w =¢

e fw=0orw=1, then

swap(swap(w)) = swap(w) by definition of swap

=w by definition of swap

* Finally, if w = abx for some a,b € {0,1} and x € {0, 1}* , then

swap(swap(w)) = swap(swap(abx)) because w = abx
= swap(ba * swap(x)) by definition of swap
= swap(ba ° 2) where z = swap(x)
= swap(baz) by definition of *
=ab * swap(z) by definition of swap
=ab * swap(swap(x)) because z = swap(x)
=abex by the induction hypothesis
=abx by definition of ®
=w because w = abx
In all cases, we conclude that swap(swap(w)) = w. [|

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary
for full credit.

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

5. The reversal w® of a string w is defined recursively as follows:

€ ifw=¢e

xRea ifw=a-x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(@) Give a recursive definition of a palindrome over the alphabet .

Solution: A string w € X* is a palindrome if and only if either
* w=g,or
* w = qa for some symbol a € %, or
e w = axa for some symbol a € 3; and some palindrome x € ¥*.
|

Rubric: 2 points =" for each base case + 1 for the recursive case. No credit for the rest of
the problem unless this part is correct.

(b) Prove w = wR for every palindrome w (according to your recursive definition).
You may assume the following facts about all strings x, y, and z:

* Reversal reversal: (x®)R = x

* Concatenation reversal: (x ® y)f = yR ¢ xR

* Right cancellation: If x ez =y *z, then x = y.

Solution: Let w be an arbitrary palindrome.
Assume that x = xR for every palindrome x such that |x| < |w].
There are three cases to consider (mirroring the definition of “palindrome”):
 If w= ¢, then w® = ¢ by definition, so w = w¥.
* If w = a for some symbol a € %, then wR = a by definition, so w = wk.
* Finally, if w = axa for some symbol a € ¥ and some palindrome x € P,

then
wlh=(a-xe*a)k
=(xsa)fea by definition of reversal
=afexReq by concatenation reversal
=a*xReq by definition of reversal
=a°x°a by the inductive hypothesis
=w by assumption
In all three cases, we conclude that w = wR. [|

Rubric: 4 points: standard induction rubric (scaled)

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

(¢) Prove that every string w such that w = w® is a palindrome (according to your
recursive definition).
Again, you may assume the following facts about all strings x, y, and z:
* Reversal reversal: (x®)R = x
* Concatenation reversal: (x ® y)R = y® o xR
* Right cancellation: If x 2=y *z,then x = y.

Solution: Let w be an arbitrary string such that w = wk.

R

Assume that every string x such that |x| < |w| and x = x" is a palindrome.

There are three cases to consider (mirroring the definition of “palindrome”):

e If w=¢, then w is a palindrome by definition.

e If w = a for some symbol a € X, then w is a palindrome by definition.

* Otherwise, we have w = ax for some symbol a and some non-empty string x.
The definition of reversal implies that w® = (ax)R = xRa.
Because X is non-empty, its reversal x® is also non-empty.
Thus, x® = by for some symbol b and some string y.
It follows that wR = bya, and therefore w = (WR)R = (bya)R = ayRb.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w = wR implies that bya = ay®b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w = ay®a and wR = aya.

The recursive definition of string equality implies yRa = ya.
Right cancellation implies that y® = y.

The inductive hypothesis now implies that y is a palindrome.
We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome. [|

Rubric: 4 points: standard induction rubric (scaled).

