CS/ECE 374 A < Fall 2021
» Homework 5 &y

Due Tuesday, October 5, 2021 at 8pm Central Time

1. Consider the following cruel and unusual sorting algorithm, proposed by Gary Miller:

CrUEL(A[1..n]):

ifn>1
CrUEL(A[1..n/2])
CrUEL(A[n/2+1..n])
UNuUsUAL(A[1..n])

UNUSUAL(A[1..n]):

ifn=2
if A[1]> A[2] ((the only comparison!))
swap A[1] «— A[2]
else
fori —1ton/4 {(swap 2nd and 3rd quarters))
swap Ali +n/4] <> Ali +n/2]
UNUSUAL(A[1..n/2]) ((recurse on left half))
UnusuaL(A[n/2+1..n]) ((recurse on right half))
UNUSUAL(A[n/4 +1..3n/4]) {(recurse on middle half))

The comparisons performed by Miller’s algorithm do not depend at all on the values in the
input array; such a sorting algorithm is called oblivious. Assume for this problem that the
input size n is always a power of 2.

(a) Prove by induction that CRUEL correctly sorts any input array. [Hint: Follow the
smallest n/4 elements. Follow the largest n/4 elements. Follow the middle n/2
elements. What does UNUSUAL actually do??]

(b) Prove that CRUEL would not correctly sort if we removed the for-loop from UNUSUAL.
(c) Prove that CRUEL would not correctly sort if we swapped the last two lines of UNUSUAL.
(d) What is the running time of UNUSUAL? Justify your answer.

(e) What is the running time of CRUEL? Justify your answer.

2. Dakshita is putting together a list of famous cryptographers, each with their dates of birth
and death: al-Kindi (801-873), Giovanni Fontana (1395-1455), Leon Alberti (1404-1472),
Charles Babbage (1791-1871), Alan Turing (1912-1954), Joan Clarke (1917-1996), Ann
Caracristi (1921—2016), and so on. She wonders which two cryptographers on her list
had the longest overlap between their lifetimes. For example, among the seven example
cryptographers, Clarke and Caracristi had the longest overlap of 45 years (1921-1966).

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

Dakshita formalizes her problem as follows. The input is an array A[1..n] of records,
each with two numerical fields A[i].birth and A[i].death and a string field A[i].name. The
desired output is the maximum, over all indices i # j, of the overlap length

min {A[i].death, A[j].death} —max {A[i].birth, A[j].birth}.

Describe and analyze an efficient algorithm to solve Dakshita’s problem.

[Hint: Start by splitting the list in half by birth date. Do not assume that cryptographers
always die in the same order they are born. Assume that birth and death dates are distinct
and accurate to the nanosecond.]

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

Rubrics
Solved Problems

4. Suppose we are given two sets of n points, one set {p;,ps,...,P,} on the line y =0 and
the other set {q1,qs,.-.,q,} on the line y = 1. Consider the n line segments connecting
each point p; to the corresponding point g;. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(nlogn) time.
See the example below.

qs q1 9o 44 q7; 43 de

P1 Py P4 P3 Pg Py bs
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1..n] and Q[1..n] of x-coordinates; you may
assume that all 2n of these numbers are distinct. No proof of correctness is necessary, but
you should justify the running time.

Solution: We begin by sorting the array P[1..n] and permuting the array Q[1..n]
to maintain correspondence between endpoints, in O(nlogn) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i] > Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i] > Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

¢ Color the elements in the Left half Q[1..|n/2]] bLue.
Color the elements in the Right half Q[|n/2|+ 1..n] Red.
Recursively count inversions in (and sort) the blue subarray Q[1..|n/2]].

Recursively count inversions in (and sort) the red subarray Q[|n/2|+1..n].

Count red/blue inversions as follows:

— MERGE the sorted subarrays Q[1..n/2] and Q[n/2+1..n], maintaining the
element colors.

— For each blue element Q[i] of the now-sorted array Q[1..n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

CS/ECE 374 A

Homework 5 (due October 5)

Fall 2021

CouNTREDBLUE(A[1..n]):
count < 0
total < 0
fori«<—1ton
if A[i] is red
count < count + 1
else

total « total + count

return total

MEeRGE and COUNTREDBLUE each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T(n) = 2T(n/2)+ O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(nlogn), as required.

Rubric: Thisis enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the MERGE algorithm, without any need for “colors”. Here changes to the standard
MERGE algorithm are indicated in red.

MERGEANDCOUNT(A[1..n],m):

i«<—1; jem+1; count < 0; total < 0O
fork—1ton
ifj>n
B[k] < A[i]; i < i+1; total « total + count
elseifi >m
B[k] < A[j]; j < j+1; count « count+1
else if A[i] < A[j]
B[k] < A[i]; i «i+1; total « total + count
else
B[k] < A[j]; j«< j+1; count « count+1
fork—1ton
A[k] <« B[k]
return total

We can further optimize MERGEANDCOUNT by observing that count is always equal to
j—m—1, so we don’t need an additional variable. (Proof: Initially, j = m+ 1 and
count = 0, and we always increment j and count together.)

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

MERGEANDCoOUNT2(A[1..n], m):
ie—1; jem+1; total <0

fork—1ton
ifj>n
B[k] < A[i]; i < i+1; total « total+j—m—1
elseif i > m
Blk] —A[j]; j—j+1
else if A[i] < A[j]
B[k] < A[i]; i < i+1; total « total +j—m—1
else
B[kl —A[j]; j—j+1
fork < 1ton
A[k] < B[k]
return total

MERGEANDCoUNT?2 still runs in O(n) time, so the overall running time is still O(nlogn),
as required. []

Rubric: 10 points =2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and
count) + 2 for time analysis. This is neither the only way to correctly describe this algorithm nor
the only correct O(nlogn)-time algorithm. No proof of correctness is required.

Max 3 points for a correct O(n?)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that
algorithm performs—not how the algorithm works, but the relationship between its input and
its output. Each English description is worth 25% of the credit for that algorithm (rounding to
the nearest point). For example, the COUNTREDBLUE algorithm is worth 4 points (“conquer”); the
English description alone (“For each blue element Q[i] of the now-sorted array Q[1..n], count
the number of smaller red elements Q[j].”) is worth 1 point.

