CS/ECE 374 A < Fall 2021
+» Homework 6 &

Due Tuesday, October 12, 2021 at 8pm Central Time

1. Vankin’s Mile is an American solitaire game played on an n x n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid shown below, the player can score 7—2+3+5+6—4+8+0 =
23 points by following the path on the left, or they can score 8—4+1+5+1—4+8 =15
points by following the path on the right.

~1i 73-2:10:-5 —1i 7:—2i10i-5

8i4i 3i-6 0 8> 4 3i-6: 0

s 1l s 6o s 15l 605

7 4 1ias 8 7 4 1545 sb

7194 0 | 70 1:-9% 4 0
-

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n x n array of values as input.

(b) A variant called Vankin’s Niknav adds an additional constraint to Vankin’s Mile: The
sequence of values that the token touches must be a palindrome. Thus, the example path
on the right is valid, but the example path on the left is not. Describe and analyze an
efficient algorithm to compute the maximum possible score for an instance of Vankin’s
Niknav, given the n x n array of values as input.

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

2. A snowball is a poem or sentence that starts with a one-letter word, where each later word
is one letter longer than its predecessor. For example:

I am the fire demon, moving castles: Calcifer!

Snowballs, sometimes also known as chaterisms or rhopalisms, are one of many styles of
constrained writing practiced by OuLiPo, a loose gathering of writers and mathematicians,
founded in France in 1960 but still active today.

Describe and analyze an algorithm to extract the longest snowball hidden in a given
string of text. You are given an array T[1..n] of English letters as input. Your goal is to
find the longest possible sequence of disjoint substrings of T, where the ith substring is
an English word of length i. Your algorithm should return the number of words in this
sequence.

Your algorithm will call the library function IsWorbp, which takes a string w as input
and returns TRUE if and only if w is an English word. IsWorDp(w) runs in O(|w|) time.

For example, given the input string
EVENIFYOUAMTHEAREMYFIRELEASTDEMONFAVORITEMOVINGCASTLESVEGETABLECALCIFER
your algorithm should return the integer 8:

EVENIFYOUAMTHEAREMYFIRELEASTDEMONFAVORITEMOVINGCASTLESVEGETABLECALCIFER

https://oulipo.net/fr/contraintes/boule-de-neige
https://oulipo.net/

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

Standard dynamic programming rubric. For problems worth 10 points:

* 3 points for a clear and correct English description of the recursive function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)

— No credit if the description is inconsistent with the recurrence.

— No credit if the description does not explicitly describe how the function value depends on
the named input parameters.

— No credit if the description refers to internal states of the eventual dynamic programming
algorithm, like “the current index” or “the best score so far”. The function must have a well-
defined value that depends only on its input parameters (and constant global variables).

— AnEnglish explanation of the recurrence or algorithm does not qualify. We want a description
of what your function returns, not (here) an explanation of how that value is computed.

— 1 for naming the function “OPT” or “DP” or any single letter.

e 4 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 for base case(s). —'2 for one minor bug, like a typo or an off-by-one error.

+ 3 for recursive case(s). —1 for each minor bug, like a typo or an off-by-one error.
— 2 for greedy optimizations without proof, even if they are correct.

— No credit for the rest of the problem if the recursive case(s) are incorrect.

e 3 points for iterative details
+ 1 for describing an appropriate memoization data structure

+ 1 for describing a correct evaluation order; a clear picture is usually sufficient. If you use
nested for loops, be sure to specify the nesting order.

+ 1 for correct time analysis. (It is not necessary to state a space bound.)

* For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal
structure is sufficient for full credit, unless the problem specifically says otherwise.

* Official solutions usually include pseudocode for the final iterative dynamic programming algo-
rithm, but iterative pseudocode is not required for full credit. If your solution includes iterative
pseudocode, you do not need to separately describe the recurrence, memoization structure,
or evaluation order. But you do still need and English description of the underlying recursive
function (or equivalently, the contents of the memoization structure). Perfectly correct iterative
pseudocode, with no explanation or time analysis, is worth at most 6 points out of 10.

* Official solutions will provide target time bounds. Faster algorithms are worth more points, and
slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of n
in either direction. Partial credit is scaled to the new maximum score, and all points above 10 (for
algorithms that are faster than our target time bound) are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we do
include them, significantly more students submit incorrect algorithms with the target running
time (earning 0/10) instead of correct algorithms that are slower than the target (earning 7/10).

* Partial credit for incomplete solutions depends on the running time of the best possible comple-
tion (up to the target running time). For example, consider a solution that contains only a clear
English description of a function, with no recurrence or iterative details. If the described function
can be developed into an algorithm with the target running time, the solution is worth 3 points;
however, if the function leads to an algorithm that is slower than the target time by a factor of n,
the solution could be worth only 2 points (= 70% of 3, rounded).

CS/ECE 374 A

Homework 6 (due October 12)

Solved Problem

3. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMI INCG and DYPRONGARMAMMICING are both shuffles of

the strings DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMI INCG

(@) Given three strings A[1..m], B[1..n], and C[1..m + n], describe and analyze an

DYPRONGARMAMMICING

algorithm to determine whether C is a shuffle of A and B.

Shuf(i, j) = 1

the prefix C[1.

Solution: We define a boolean function Shuf(i, j), which is TRUE if and only if
.1+ j] is a shuffle of the prefixes A[1..i] and B[1..j]. We need
to compute Shuf(m, n). The function Shuf satisfies the following recurrence:
TRUE ifi=j=0
Shuf(0,j —1)A(B[j]=C[j]) ifi=0and j>0
Shuf(i —1,0) A(A[i] = C[i]) ifi>0and j=0

(Shufti — 1, /) A (ALi] = C[i + 1))

\Y, (Shuf(i,j —DAB[j]=Cli+ j])) otherwise

We can memoize this function into a two-dimensional array Shuf[0..m][0..n].
Each array entry Shuf[i, j] depends only on the entries immediately below and
immediately to the right: Shuf[i —1,j] and Shuf{i, j — 1]. Thus, we can fill the
array in standard row-major order.

IsSHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
Shuf{0,0] <« TRUE
forj<—1ton
Shuf[0, j] — Shuf[0, j — 11 A (BLj1 = C[j])
forie—1ton
Shufli, 0] « Shufli—1,0] A (A[i] = B[i])
forje—1ton
Shufli, j] « FALSE
ifAli]=Cl[i+j]
Shufli,j] « Shufli—1,j]
if B[i]=C[i+j]
Shufli, j] « Shufli,]V Shuf[i,j —1]

return Shuf[m, n]

The algorithm runs in O(mn) time.

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

Rubric: 5 points, standard dynamic programming rubric. 3 points for a slower polynomial-
time algorithm; scale partial credit accordingly.

(b) Given three strings A[1..m], B[1..n], and C[1..m + n], describe and analyze an
algorithm to determine the number of different ways that A and B can be shuffled to
obtain C.

Solution: Let #Shuf(i, j) denote the number of different ways that the prefixes
A[1..i]and B[1..j] can be shuffled to obtain the prefix C[1..i+ j]. We need to
compute #Shuf(m,n).

The #Shuf function satisfies the following recurrence. Here I am using
Iverson bracket notation to convert booleans to integers: For any proposition P,
the expression [P] is equal to 1 if P is true and O if P is false.

(1 ifi=j=0
#Shuf(0,j—1)-[B[j]1= C[j1] ifi=0andj>0
#Shuf(i, j) = | #Shuf(i —1,0) - [A[i] = C[i]] ifi>0and j=0

(#Shuf(i —1,j) - [Ali] = C[i]])
\ +(#Shuf(i,j—1)-[B[j1=C[j]]) otherwise

We can memoize this function into a two-dimensional array #Shuf[0..m][0..n].
As in part (a), we can fill the array in standard row-major order.

NumMmSHUFFLES(A[1..m], B[1..n], C[1..m+n]):
#Shuf[0,0] « 1
forj—1ton
#Shuf[0, j] < O
if B[j1=C[jD
#Shuf[0, j] — #Shuf[0,j —1]
fori«<—1ton
#Shuf[0, j] «— O
if (A[i] = B[i])
#Shuf[0, j] — #Shufli —1,0]
forje—1ton
#Shuf[i,j]< 0
if Ali]=C[i+j]
#Shufli, j] — #Shufli—1,7]
if B[i]=C[i+j]
#Shufli, j] — #Shufli, j1+ #Shuf[i,j — 1]

return Shuf[m, n]

The algorithm runs in O(mn) time. [|

Rubric: 5 points, standard dynamic programming rubric. 3 points for a slower polynomial-
time algorithm; scale partial credit accordingly.

