CS 374 Lab 1: Preliminaries, Strings, and Languages

Date: January 20, 2016.

Recall the following notions: Sets, set building notation, subset, proper subset, empty set, Venn diagram, Cartesian product of sets, power set of a set.

Problem 1. [Category: Comprehension] For each of the following statements answer **True**, **False**, or **Meaningless**.

- $\{a,b,c\} \cap \{d,e\} = \emptyset$
- $\{a, b, c\} \cap \{d, e\} = \{\emptyset\}$
- $\{a, b, c\} \cup \{d, a, e\} = \{a, b, c, d, a, e\}$
- $\emptyset \in \{\emptyset, a\}$
- $S \in \mathcal{P}(S)$, where S is a set and $\mathcal{P}(S)$ is the powerset of S
- $a \in \mathcal{P}(\{a\})$
- $\{a,b\} + \{c,d\} = \{a,b,c,d\}$
- $\{\{a,a\}\}=\{a,a\}$
- $\{\{a\},\{a\}\}=\{a,a\}$
- $\{a,b\} \times \{b\} = \{(a,b),(b,b)\}$
- $\{a,b\} \times \{c,d\} = \{c,d\} \times \{a,b\}$

Problem 2. [Category: Comprehension+Proof] Let us define a set U_n inductively as follows.

- $U_1 = \{1\}$
- $U_i = U_{i-1} \cup \{ \max(U_{i-1}) + 2(i-1) + 1 \}$

Answer the following questions about the set U_n .

- 1. What is U_2 ? What is U_3 ?
- 2. Is $U_{n-1} \in U_n$?
- 3. What is U_n ? Prove your answer.

Problem 3. [Category: Comprehension+Proof] For a string $w \in \{0,1\}^*$, w^c is inductively defined as follows.

$$w^{c} = \begin{cases} \epsilon & \text{if } w = \epsilon \\ 1 & \text{if } w = 0 \\ 0 & \text{if } w = 1 \\ (a^{c})(u^{c}) & \text{if } w = au \text{ where } a \in \{0, 1\}, \ u \in \{0, 1\}^{*} \end{cases}$$

- 1. What is $(10101)^c$?
- 2. Prove that for any strings $u, v \in \{0, 1\}^*, u^c \cdot v^c = (u \cdot v)^c$.
- 3. Recall \boldsymbol{w}^R denotes the reverse of string \boldsymbol{w} defined as

$$w^R = \left\{ \begin{array}{ll} \epsilon & \text{if } w = \epsilon \\ (u^R) {\, \boldsymbol{\cdot}\, } a & \text{if } w = a {\, \boldsymbol{\cdot}\, } u \text{ where } a \in \Sigma, \ u \in \Sigma^* \end{array} \right.$$

Prove that $(w^c)^R = (w^R)^c$.