CS 374 Lab 3: DFA Proofs: Correctness and Lower Bounds

Date: January 26, 2016.

Recall that a fooling set for a language $L \subseteq \Sigma^{*}$ is a set of strings $F \subseteq \Sigma^{*}$ such that for every $u, v \in F$ with $u \neq v$, there is $w \in \Sigma^{*}$ such that either $u w \in L$ and $v w \notin L$ or $u w \notin L$ and $v w \in L$. Further if a language L has a fooling set of size k then any DFA recognizing L must have at least k states.

Problem 1. [Category: Proof] Consider the language L_{1} that consists of all strings that have 1 in every odd position. The DFA for L (that you designed in Lab 2) is shown in Figure 1

Figure 1: DFA for problem 1

1. Prove that the DFA in Figure 1 correctly recognizes L.
2. Prove that any DFA recognizing L has at least 3 states.

Problem 2. [Category: Design] Design a DFA for the language $A_{k}=\left\{b b c^{n} \mid n \bmod k=0\right\}$ over the alphabet $\{b, c\}$.

