CS 374 Lab 11: Binary Search

Date: February 26, 2016.

Problem 1. [Category: Design]

- 1. Suppose A[1..n] is an array of n distinct integers, sorted so that $A[1] < A[2] < \cdots < A[n]$. Each integer A[i] could be positive, negative, or zero. Describe a fast algorithm that either computes an index i such that A[i] = i or correctly reports that no such index exists..
- 2. Now suppose A[1..n] is a sorted array of n distinct **positive** integers. Describe an even faster algorithm that either computes an index i such that A[i] = i or correctly reports that no such index exists. *Hint:* This is **really** easy.

Problem 2. [Category: Design] Suppose we are given an array A[1..n] such that $A[1] \ge A[2]$ and $A[n-1] \le A[n]$. We say that an element A[x] is a **local minimum** if both $A[x-1] \ge A[x]$ and $A[x] \le A[x+1]$. Describe and analyze a fast algorithm that returns the index of one local minimum.

Problem 3. [Category: Design]

- 1. Suppose you are given two sorted arrays A[1..n] and B[1..n] containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$.
- 2. Now suppose you are given two sorted arrays A[1..m] and B[1..n] and an integer k. Describe a fast algorithm to find the kth smallest element in the union $A \cup B$.