CS 374 LAB 22: REDUCTIONS, UNDECIDABILE AND NON-R.E. LANGUAGES

Date: April 15, 2016.

Problem 1. [Category: Proof] For each of the languages below indicate whether it is (a) decidable (a.k.a. *recursive*), (b) recognizable (a.k.a. *recursively enumerable*) but not decidable, or (c) not recognizable.

You may use the following facts:

- the language SELFREJECT = { $\langle M \rangle$ | M does not accept $\langle M \rangle$ } is not recursively enumerable;
- the language ACCEPT = { $\langle M, w \rangle \mid M$ accepts w} is recursively enumerable but not decidable.
- $L_1 = \{ \langle M, w \rangle \mid M \text{ does not halt on input } w \}.$
- $L_2 = \{ \langle M, w, n \rangle \mid M \text{ accepts } w \text{ within } n \text{ steps} \}.$
- $L_3 = \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle \}.$

Problem 2. [Category: Proof] We saw in class that the language $ACCEPT = \{\langle M, w \rangle \mid M \text{ accepts } w\}$ is undecidable. Use a reduction to argue that the language $L = \{\langle M_1, M_2, w \rangle \mid \text{ exactly one of } M_1 \text{ and } M_2 \text{ accepts } w\}$ is undecidable.

Problem 3. [Category: Proof] Can you show that L from the previous problem is not recognizable? *Hint:* In the previous problem you showed ACCEPT $\leq_m L$. Show that $\overline{\text{ACCEPT}} \leq_m L$ using similar ideas, and then use the fact that $\overline{\text{ACCEPT}}$ is not recognizable to complete the proof.