CS/ECE 374 Lab 1%2 — January 20 Spring 2017

Give regular expressions for each of the following languages over the alphabet {0, 1}.

1. All strings containing the substring 000.

Solution: (0 + 1)*000(0 + 1)* []

2. All strings not containing the substring 000.

Solution: (1+01+001)*(¢+0+00) [|

Solution: (¢ +0+00)(1(e¢+0+00))* [|

3. All strings in which every run of 0s has length at least 3.

Solution: (1+ 0000*)* [|

Solution: (¢ + 1)((¢ + 0000%)1)* (¢ + 0000*) |

4. All strings in which every substring 000 appears after every 1.

Solution: (1+01+001)"0* [|

5. All strings containing at least three 0Os.
Solution: (0 + 1)*0(0 + 1)*0(0 + 1)*0(0 + 1)* [|

Solution (clever): 1*01*01*0(0 + 1)* or (0 + 1)*01*01*01* [|

6. Every string except 000. [Hint: Don'’t try to be clever.]

Solution: Every string w # 000 satisfies one of three conditions: Either |w| < 3, or |[w| =3
and w # 000, or |w| > 3. The first two cases include only a finite number of strings, so we
just list them explicitly. The last case includes all strings of length at least 4.

€+0+1+00+01+10+11
+001+010+011+100+101+110+111
+(1+0)(1+0)(1+0)(1+0)(1+0)

Solution (clever): £ +0+00+(1+01+001+000(1+0))(1+ 0)* [

CS/ECE 374 Lab 1%2 — January 20 Spring 2017

7.

*8.

All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

Solution: Equivalently, strings that alternate between Os and 1s: (01+10)*(¢+0+1) W

All strings containing at least two Os and at least one 1.

Solution: There are three possibilities for how such a string can begin:

» Start with 00, then any number of Os, then 1, then anything.
e Start with 01, then any number of 1s, then 0, then anything.
» Start with 1, then a substring with exactly two Os, then anything.
All together: 000*1(0 + 1)* + 011*0(0+ 1)* + 11*01*0(0 + 1)*
Or equivalently: (000*1 + 011%0 + 11*01*0)(0 + 1)* []

Solution: There are three possibilities for how the three required symbols are ordered:

e Contains a 1 before two Os: (o+1)*1(0+1)0(0+1)*0(0+ 1)*
* Contains a 1 between two Os: (0+1)*0(0+1)"1(0+1)*0(0+ 1)*
* Contains a 1 after two Os: (o+1)0(0+1)0(@+1)1(0+1)*

So putting these cases together, we get the following:

OG+1)1(0+1)0(0+1)0(0+ 1)*
+O+1)0(0+1)"1(0+1)*0(0+ 1)*
+O@+1)0(0+1)'0(O0+1)1(0+ 1) ™

Solution (clever): (0 + 1)* (101*0 +010 + 01*01) (04 1) [|

. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

Solution: (0(01)*1+1(10)*0)"- (¢ +0(01)*(0 + &)+ 1(10)*(1 +¢)) [

CS/ECE 374 Lab 1%2 — January 20 Spring 2017

*10. All strings in which the substring @00 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in {0, 1}* alternates between (possibly empty) blocks of 0s and
individual 1s; that is, {0, 1}* = (0*1)*0*. Trivially, every 000 substring is contained in
some block of 0s. Our strategy is to consider which blocks of Os contain an even or odd
number of 000 substrings.

Let X denote the set of all strings in ©* with an even number of 000 substrings. We
easily observe that X = {0" |n=1 or nis even} = 0 + (00)*.

Let Y denote the set of all strings in 0* with an odd number of 000 substrings. We
easily observe that Y = {0" | n> 1 and n is odd} = 000(00)*.

We immediately have 0* = X + Y and therefore {0,1}* = (X + Y)1)*(X +Y).

Finally, let L denote the set of all strings in {0, 1}" with an even number of 000
substrings. A string w € {0, 1}* is in L if and only if an even number of blocks of Os in w
are in Y'; the remaining blocks of Os are all in X.

L=((X1)Y1-(X1)'Y1) (X1)X
Plugging in the expressions for X and Y gives us the following regular expression for L:
(((0+(oo)*)1)* -000(00)*1-((0+(00))1)" ooo(oo)*l)* -((0+(00)*)1)"-(0+(00)*)

Whew! [|

