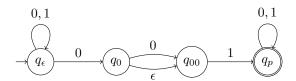
CS 374: Algorithms & Models of Computation

Chandra Chekuri

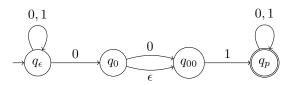
University of Illinois, Urbana-Champaign

Spring 2017

CS 374: Algorithms & Models of Computation, Spring 2017


Non-deterministic Finite Automata (NFAs)

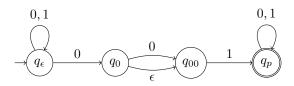
Lecture 4
January 26, 2017


Part I

NFA Introduction

Non-deterministic Finite State Automata (NFAs)

Non-deterministic Finite State Automata (NFAs)

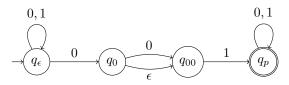

Differences from DFA

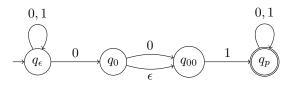
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

4

Spring 2017

Non-deterministic Finite State Automata (NFAs)

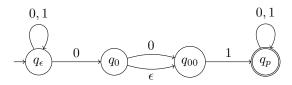

Differences from DFA


- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

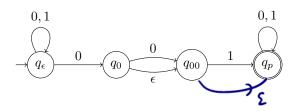
Questions:

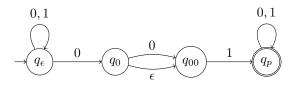
- Is this a "real" machine?
- What does it do?

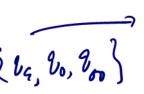
4

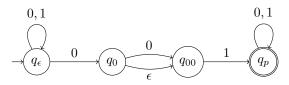


Machine on input string w from state q can lead to set of states (could be empty)

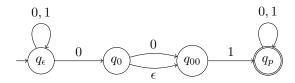

ullet From $oldsymbol{q}_{\epsilon}$ on $oldsymbol{1}$


Spring 2017

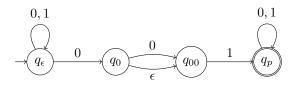

- ullet From q_{ϵ} on 1
- ullet From ${m q}_{\epsilon}$ on ${m 0}$


- From q_{ϵ} on 1
- ullet From $oldsymbol{q}_{\epsilon}$ on $oldsymbol{0}$
- From q_0 on $\epsilon = \{ \ell_0, \ell_0 \}$

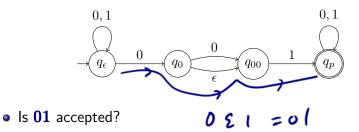
- From q_{ϵ} on 1
- ullet From $oldsymbol{q}_{\epsilon}$ on $oldsymbol{0}$
- ullet From $oldsymbol{q}_0$ on $oldsymbol{\epsilon}$
- ullet From q_{ϵ} on ullet 1

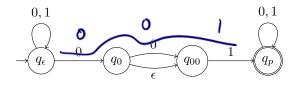


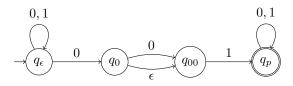
- From q_{ϵ} on 1
- From q_{ϵ} on 0
- ullet From q_0 on ϵ
- From q_{ϵ} on 01
- From q_{00} on 00


NFA acceptance: informal

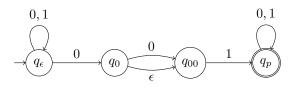
Informal definition: A NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.


6

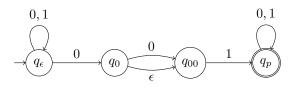

NFA acceptance: informal


Informal definition: A NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

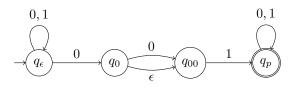
The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.



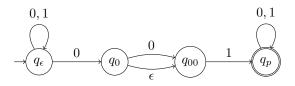
- Is **01** accepted?
- Is **001** accepted?



- Is 01 accepted?
- Is 001 accepted?
- Is **100** accepted?



- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?


Spring 2017

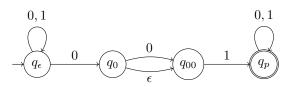
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

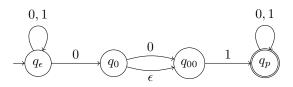
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

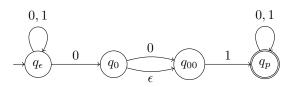
Formal Tuple Notation

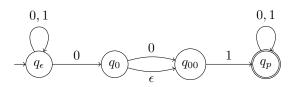

Definition

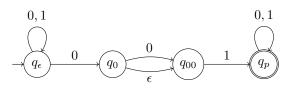
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

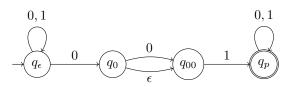

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

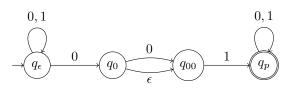
 $\delta(q,a)$ for $a \in \Sigma \cup \{\epsilon\}$ is a susbet of Q — a set of states.

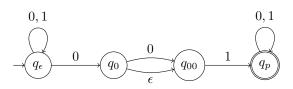

8



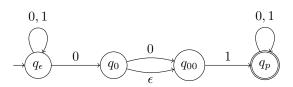

• $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$


- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- Σ =


- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\bullet \ \Sigma = \{0,1\}$


- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\bullet \ \Sigma = \{0,1\}$
- \bullet δ

- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\bullet \ \Sigma = \{0,1\}$
- \bullet δ
- *s* =



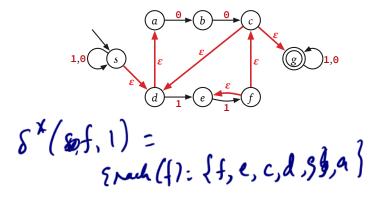
- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_{\epsilon}$

- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\bullet \ \Sigma = \{0,1\}$
- \bullet δ
- $s = q_{\epsilon}$
- A =

Spring 2017

- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_{\epsilon}$
- $\bullet \ A = \{q_p\}$

0	٤	0	1
Ŷı	ф	20,90)	{ 2 s }
Vo	{ % }	{200}	ø


Given NFA $N = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is a set of states that N can go to from q on reading $a \in \Sigma \cup \{\epsilon\}$.

Given NFA $N = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is a set of states that N can go to from q on reading $a \in \Sigma \cup \{\epsilon\}$.

Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ where $\delta^*(q, w)$ is the set of states that can be reached by N on input w starting in state q.

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

Definition

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$ $\delta^*(q, a) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$

Extending the transition function to strings

Definition

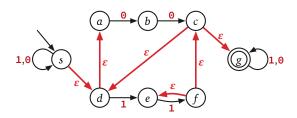
For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

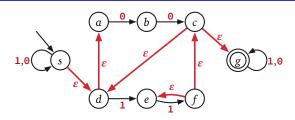
- if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$ $\delta^*(q, a) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$
- if w = ax, $\delta^*(q, w) = \bigcup_{p \in \epsilon_{\mathsf{reach}}(q)} (\bigcup_{r \in \delta(p, a)} \delta^*(r, x))$

Formal definition of language accepted by N

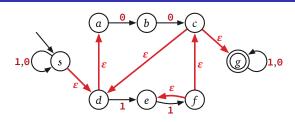

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

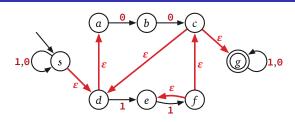
Definition


The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$


What is:

• $\delta^*(s,\epsilon)$


What is:

- $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$

What is:

- $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$
- $\delta^*(c,0)$

What is:

- $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b,00)$

Another definition of computation

Definition

A state p is reachable from q on w denoted by $q \xrightarrow{w}_{N} p$ if there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\epsilon\}$ for each i, such that:

- \bullet $r_0 = q$
- for each i, $r_{i+1} \in \delta(r_i, x_{i+1})$,
- $r_k = p$, and
- $\bullet \ \ w = x_1 x_2 x_3 \cdots x_k.$

Definition

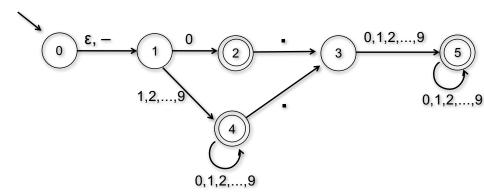
$$\delta^* N(q, w) = \{ p \in Q \mid q \xrightarrow{w}_N p \}.$$

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Part II


Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers.

Strings that represent decimal numbers.

• {strings that contain CS374 as a substring}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}

20

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

 $L_k = \{ \text{bitstrings that have a } 1 \text{ } k \text{ positions from the end} \}$

21 / 37

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- ullet N' has single final state f that has no outgoing transitions
- The start state **s** of **N** is different from **f**

Part III

Closure Properties of NFAs

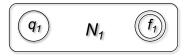
Spring 2017

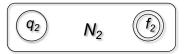
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union


Theorem


For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

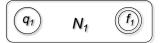
Closure under union

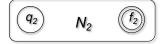
Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

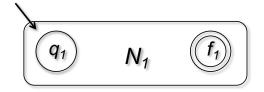
Theorem

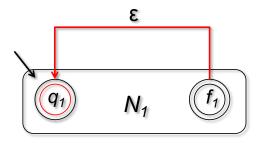

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.


26

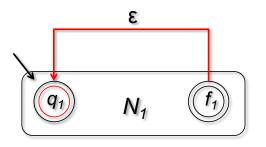
Closure under concatenation

Theorem


For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

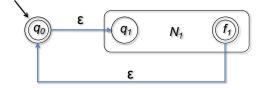

<u>Theorem</u>

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.


Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem


For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Part IV

NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

Regular Expressions

```
\emptyset denotes \emptyset
\epsilon denotes \{\epsilon\}
a denote \{a\}
\mathbf{r}_1 + \mathbf{r}_2 denotes R_1 \cup R_2
\mathbf{r}_1\mathbf{r}_2 denotes R_1R_2
\mathbf{r}^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Theorem

For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Base cases: \emptyset , $\{\epsilon\}$, $\{a\}$ for $a \in \Sigma$

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

• r_1, r_2 regular expressions and $r = r_1 + r_2$.

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

• r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$.

34

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

• r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)

34

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

• r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)

34

 $\bullet r = r_1 \bullet r_2.$

Spring 2017

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

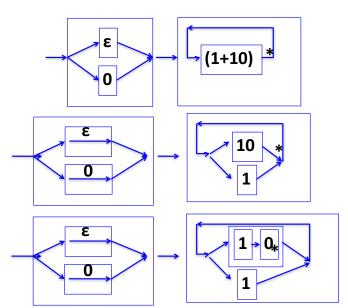
- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

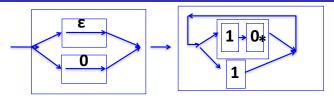
Inductive cases:

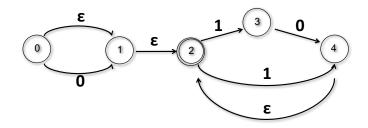
- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:


- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star


$$(\epsilon+0)(1+10)^*$$


$$\rightarrow (\epsilon+0) \rightarrow (1+10)^*$$

$$\downarrow 0$$

$$\downarrow (1+10)$$

Final NFA simplified slightly to reduce states