CS/ECE 374 A <4 Spring 2018

» Homework 8 &
Due Tuesday, April 3, 2018 at 8pm

This is the last homework before Midterm 2.

1. After moving to a new city, you decide to choose a walking route from your home to your
new office. To get a good daily workout, your route must consist of an uphill path (for
exercise) followed by a downhill path (to cool down), or just an uphill path, or just a
downhill path.? (You’ll walk the same path home, so you’ll get exercise one way or the
other.) But you also want the shortest path that satisfies these conditions, so that you
actually get to work on time.

Your input consists of an undirected graph G, whose vertices represent intersections
and whose edges represent road segments, along with a start vertex s and a target vertex t.
Every vertex v has a value h(v), which is the height of that intersection above sea level,
and each edge uv has a value £(uv), which is the length of that road segment.

(a) Describe and analyze an algorithm to find the shortest uphill-downhill walk from s
to t. Assume all vertex heights are distinct.

(b) Suppose you discover that there is no path from s to t with the structure you want.
Describe an algorithm to find a path from s to ¢ that alternates between “uphill” and
“downhill” subpaths as few times as possible, and has minimum length among all
such paths. (There may be even shorter paths with more alternations, but you don’t
care about them.) Again, assume all vertex heights are distinct.

2. Let G = (V,E) be a directed graph with weighted edges; edge weights could be positive,
negative, or zero.

(a) How could we delete an arbitrary vertex v from this graph, without changing the
shortest-path distance between any other pair of vertices? Describe an algorithm that
constructs a directed graph G’ = (V’, E’) with weighted edges, where V' = V\{v}, and
the shortest-path distance between any two nodes in G’ is equal to the shortest-path
distance between the same two nodes in G, in O(V?) time.

(b) Now suppose we have already computed all shortest-path distances in G’. Describe
an algorithm to compute the shortest-path distances in the original graph G from v
to every other vertex, and from every other vertex to v, all in O(V?) time.

(c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs in
O(V?) time. (The resulting algorithm is almost the same as Floyd-Warshall!)

1A hill is an area of land that extends above the surrounding terrain, usually at a fairly gentle gradient. Like a
building, but smoother and made of dirt and rock and trees instead of steel and concrete. It’s hard to explain.
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3. The first morning after returning from a glorious spring break, Alice wakes to discover that
her car won’t start, so she has to get to her classes at Sham-Poobanana University by public
transit. She has a complete transit schedule for Poobanana County. The bus routes are
represented in the schedule by a directed graph G, whose vertices represent bus stops and
whose edges represent bus routes between those stops. For each edge u—v, the schedule
records three positive real numbers:

e {(u—v) is the length of the bus ride from stop u to stop v (in minutes)
* f(u—v) is the first time (in minutes past 12am) that a bus leaves stop u for stop v.

* A(u—v) is the time between successive departures from stop u to stop v (in minutes).

Thus, the first bus for this route leaves u at time f(u—v) and arrives at v at time
f(u—v)+£(u—v), the second bus leaves u at time f(u—v)+ A(u—v) and arrives at v at
time f (u—v)+ A(u—v) + £(u—v), the third bus leaves u at time f (u—v)+2- A(u—v) and
arrives at v at time f(u—v)+2- A(u—v) + £(u—v), and so on.

Alice wants to leaves from stop s (her home) at a certain time and arrive at stop ¢ (The
See-Bull Center for Fake News Detection) as quickly as possible. If Alice arrives at a stop on
one bus at the exact time that another bus is scheduled to leave, she can catch the second
bus. Because she’s a student at SPU, Alice can ride the bus for free, so she doesn’t care how
many times she has to change buses.

Describe and analyze an algorithm to find the earliest time Alice can reach her
destination. Your input consists of the directed graph G = (V, E), the vertices s and t,
the values £(e), f (e), A(e) for each edge e € E, and Alice’s starting time (in minutes past
12am).

[Hint: In this rare instance, modifying the algorithm may be more efficient than
modifying the input graph. Don’t describe the algorithm from scratch; just describe your
changes.]
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Solved Problem

4. Although we typically speak of “the” shortest path from one vertex to another, a single
graph could contain several minimum-length paths with the same endpoints.
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Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that the necessary arithmetic operations
can be performed in O(1) time each.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u—v tight if dist(u) + w(u—v) =
dist(v). Every edge in a shortest path from s to t must be tight. Conversely, every
path from s to t that uses only tight edges has total length dist(t) and is therefore a
shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V +E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains
only to count the number of paths from s to t in H.

For any vertex v, let NumPaths(v) denote the number of paths in H from v to t; we
need to compute NumPaths(s). This function satisfies the following simple recurrence:

1 ifv=t

NumPaths(v) = ZNumPathS(W) otherwise

Vow

In particular, if v is a sink but v # t (and thus there are no paths from v to t), this
recurrence correctly gives us NumPaths(v) = Z @=0.

We can memoize this function into the graph itself, storing each value NumPaths(v)
at the corresponding vertex v. Since each subproblem depends only on its successors
in H, we can compute NumPaths(v) for all vertices v by considering the vertices in
reverse topological order, or equivalently, by performing a depth-first search of H
starting at s. The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in
the preprocessing phase, which runs in O(E log V) time. |
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Rubric: 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction
rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)




