CS/ECE 374 A $\&$ Spring 2018

 ค Homework 9 ~

 ค Homework 9 ~}

Due Tuesday, April 17, 2018 at 8pm

1. For any integer k, the problem $k S_{A T}$ is defined as follows:

- Input: A boolean formula Φ in conjunctive normal form, with exactly k distinct literals in each clause.
- Output: True if Φ has a satisfying assignment, and False otherwise.
(a) Describe a polynomial-time reduction from $2 \mathrm{SAT}_{\mathrm{At}}$ to 3 SAT, and prove that your reduction is correct.
(b) Describe and analyze a polynomial-time algorithm for 2SAT. [Hint: This problem is strongly connected to topics covered earlier in the semester.]
(c) Why don't these results imply a polynomial-time algorithm for 3SAT?

2. This problem asks you to describe polynomial-time reductions between two closely related problems:

- SubsetSum: Given a set S of positive integers and a target integer T, is there a subset of S whose sum is T ?
- Partition: Given a set S of positive integers, is there a way to partition S into two subsets S_{1} and S_{2} that have the same sum?
(a) Describe a polynomial-time reduction from SubsetSum to Partition.
(b) Describe a polynomial-time reduction from Partition to SubsetSum.

Don't forget to to prove that your reductions are correct.
3. Pebbling is a solitaire game played on an undirected graph G, where each vertex has zero or more pebbles. A single pebbling move removes two pebbles from some vertex v and adds one pebble to an arbitrary neighbor of v. (Obviously, v must have at least two pebbles before the move.) The PebbleClearing problem asks, given a graph $G=(V, E)$ and a pebble count $p(v)$ for each vertex v, whether is there a sequence of pebbling moves that removes all but one pebble. Prove that PebbleClearing is NP-hard.

Solved Problem

4. Consider the following solitaire game. The puzzle consists of an $n \times m$ grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions:
(1) Every row contains at least one stone.
(2) No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.

An unsolvable puzzle.

Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.
Let Φ be a 3 CNF boolean formula with m variables and n clauses. We transform this formula into a puzzle configuration in polynomial time as follows. The size of the board is $n \times m$. The stones are placed as follows, for all indices i and j :

- If the variable x_{j} appears in the i th clause of Φ, we place a blue stone at (i, j).
- If the negated variable $\overline{x_{j}}$ appears in the i th clause of Φ, we place a red stone at (i, j).
- Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if Φ is satisfiable. This claim immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:
\Longrightarrow First, suppose Φ is satisfiable; consider an arbitrary satisfying assignment. For each index j, remove stones from column j according to the value assigned to x_{j} :

- If $x_{j}=$ True, remove all red stones from column j.
- If $x_{j}=$ False, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to False literals. Because every variable appears in at least one clause, each column now contains stones of only one color (if any). On the other hand, each clause of Φ must contain at least one True literal, and thus each row still contains at least one stone. We conclude that the puzzle is satisfiable.
\Longleftarrow On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For each index j, assign a value to x_{j} depending on the colors of stones left in column j :

- If column j contains blue stones, set $x_{j}=$ True.
- If column j contains red stones, set $x_{j}=$ False.
- If column j is empty, set x_{j} arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the remaining stones are all True. Each row still has at least one stone, so each clause of Φ contains at least one True literal, so this assignment makes $\Phi=$ True. We conclude that Φ is satisfiable.

This reduction clearly requires only polynomial time.

Rubric (Standard polynomial-time reduction rubric): 10 points $=$
+3 points for the reduction itself

- For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course). See the list on the next page.
+ 3 points for the "if" proof of correctness
+ 3 points for the "only if" proof of correctness
+ 1 point for writing "polynomial time"
- An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.
- A reduction in the wrong direction is worth $0 / 10$.

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?
3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices in G that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G ?
MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices that touch every edge in G ?

MinSetCover: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set S, what is the size of the smallest subcollection whose union is S ?

MinHittingSet: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set S, what is the size of the smallest subset of S that intersects every subset S_{i} ?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in G ?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in G ?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements sum to k ?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3Partition: Given a set X of $3 n$ positive integers, can X be partitioned into n three-element subsets, all with the same sum?

IntegerLinearProgramming: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^{n}$ and $c \in Z^{d}$, compute $\max \left\{c \cdot x \mid A x \leq b, x \geq 0, x \in \mathbb{Z}^{d}\right\}$.

FeasibleILP: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^{n}$, determine whether the set of feasible integer points $\max \left\{x \in \mathbb{Z}^{d} \mid A x \leq b, x \geq 0\right\}$ is empty.

Draughts: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?
SteamedHams: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?

