
Once, or twice, though you should fail,
Try, try again;

If you would, at last, prevail,
Try, try again;

If we strive, ’tis no disgrace.
Though we may not win the race;
What should you do in that case?

Try, try again.
— Thomas H. Palmer, The Teacher’s Manual: Being an Exposition

of an Efficient and Economical System of Education
Suited to the Wants of a Free People (1840)

I dropped my dinner, and ran back to the laboratory. There, in my excitement, I tasted
the contents of every beaker and evaporating dish on the table. Luckily for me, none
contained any corrosive or poisonous liquid.

— Constantine Fahlberg on his discovery of saccharin,
Scientific American (1886)

The greatest challenge to any thinker is stating the problem
in a way that will allow a solution.

— Bertrand Arthur William Russell

CHAPTER2
Backtracking

Status: Beta except for Sections 2.5, 2.6, and 2.7.

This chapter describes another recursive algorithm strategy called backtracking.
A backtracking algorithm tries to build a solution to a computational problem incre-
mentally, one small piece at a time. Whenever the algorithm needs to decide between
multiple alternatives to the next component of the solution, it simply tries all possible
options recursively.

2.1 n Queens

The prototypical backtracking problem is the classical n Queens Problem, first proposed
by German chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”)
for the standard 8× 8 board and by François-Joseph Eustache Lionnet in 1869 for the
more general n× n board. The problem is to place n queens on an n× n chessboard,

© Copyright 2018 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

2. BACKTRACKING

so that no two queens can attack each other. For readers not familiar with the rules of
chess, this means that no two queens are in the same row, column, or diagonal.

♕

♕

♕

♕

♛♕
♛♕

♛♕
♛♕

Figure 2.1. One solution to the 8 queens problem, represented by the array [4, 7,3, 8,2, 5,1, 6]

In a letter written to his friend Heinrich Schumacher in 1850, the eminent mathemati-
cian Carl Friedrich Gauss wrote that one could easily confirm Franz Nauck’s claim that
the Eight Queens problem has 92 solutions by trial and error in a few hours. (“Schwer ist
es übrigens nicht, durch ein methodisches Tatonnieren sich diese Gewifsheit zu verschaffen,
wenn man eine oder ein paar Stunden daran wenden will.”) His description Tatonnieren
comes from the French tâttoner, meaning to feel, grope, or fumble around blindly, as if
in the dark. Unfortunately, Gauss did not describe the mechanical groping method he
had in mind, but he did observe that any solution can be represented by a permutation
of the integers 1 through 8 satisfying a few simple arithmetic properties.

Following Gauss, let’s represent possible solutions to the n-queens problem using an
array Q[1 .. n], where Q[i] indicates which square in row i contains a queen. Then we
can find solutions using the following recursive strategy, described in 1882 by the French
recreational mathematician Édouard Lucas, who attributed the method to Emmanuel
Laquière.1 We place queens on the board one row at a time, starting at the top. To place
the rth queen, we try all n squares in row r from left to right in a simple for loop. If a
particular square is attacked by an earlier queen, we ignore that square; otherwise, we
tentatively place a queen on that square and recursively grope for consistent placements
of the queens in later rows.

Figure 2.2 shows the resulting algorithm, which recursively enumerates all complete
n-queens solutions that are consistent with a given partial solution. The input parameter r
is the first empty row; thus, to compute all n-queens solutions with no restrictions, we
would call RecursiveNQueens(Q[1 .. n], 1). The outer for-loop considers all possible
placements of a queen on row r; the inner for-loop checks whether a candidate placement
of row r is consistent with the queens that are already on the first r − 1 rows.

The execution of RecursiveNQueens can be illustrated using a recursion tree.
Each node in this tree corresponds to a legal partial solution; in particular, the root

1Édouard Lucas. Quatrième recreation: Le probléme des huit-reines au jeu des èchecs. Chapter 4 in
Récréations Mathématiques, 1882.

2

2.1. n Queens

RecursiveNQueens(Q[1 .. n], r):
if r = n+ 1

print Q
else

for j← 1 to n
legal← True
for i← 1 to r − 1

if (Q[i] = j) or (Q[i] = j + r − i) or (Q[i] = j − r + i)
legal← False

if legal
Q[r]← j
RecursiveNQueens(Q[1 .. n], r + 1)

Figure 2.2. Laquière’s backtracking algorithm for the n-queens problem.

corresponds to the empty board (with r = 0). Edges in the recursion tree correspond to
recursive calls. Leaves correspond to partial solutions that cannot be further extended,
either because there is already a queen on every row, or because every position in the
next empty row is attacked by an existing queen. The backtracking search for complete
solutions is equivalent to a depth-first search of this tree.

♕ ♛♕ ♕ ♛♕

♕
♛♕

♕
♕

♛♕
♕

♕
♛♕

♛♕
♛♕

♛♕
♕

♛♕
♕

♕
♛♕

♕ ♛♕

♕
♕

♛♕
♛♕

♛♕ ♕

♛♕
♕

♕
♛♕

♕
♛♕

♛♕
♕

Figure 2.3. The complete recursion tree for Laquière’s algorithm for the 4 queens problem.

3

2. BACKTRACKING

2.2 Game Trees

Consider the following simple two-player game2 played on an n× n square grid with a
border of squares; let’s call the players Horatio Fahlberg-Remsen and Vera Rebaudi.3

Each player has n tokens that they move across the board from one side to the other.
Horatio’s tokens start in the left border, one in each row, and move horizontally to the
right; symmetrically, Vera’s tokens start in the top border, one in each column, and move
vertically downward. The players alternate turns. In each of his turns, Horatio either
moves one of his tokens one step to the right into an empty square, or jumps one of his
tokens over exactly one of Vera’s tokens into an empty square two steps to the right.
If no legal moves or jumps are available, Horatio simply passes. Similarly, Vera either
moves or jumps one of her tokens downward in each of her turns, unless no moves or
jumps are possible. The first player to move all their tokens off the edge of the board
wins. (It’s not hard to prove that as long as there are tokens on the board, at least one
player has a legal move.)

↓

↓ ↓ ↓
→
→
→

↓ ↓ ↓

→
→

↓ ↓
→

→
→

↓

↓ ↓
→

→
↓

↓
→

→
→

↓

↓
↓

→
→

↓

↓
→
→

→
↓

↓
→

→
→

↓ ↓
→

→
→

↓ ↓ ↓
→

→

↓ ↓
→

→
→

↓

↓ ↓ →
→

↓

↓
→

→
→

↓

↓
↓

→
→

↓
↓

→
→

→

↓
↓ ↓

→
→

→
↓

↓

→
→

→
↓ ↓

↓

→
→

↓ ↓

→
→

→

→

→
→

→

→ →

→

↓
↓

↓ ↓

↓
↓ ↓

↓ ↓

Figure 2.4. Vera wins the 3× 3 fake-sugar-packet game.

2I don’t know what this game is called, or even if I’m remembering the rules correctly; I learned it (or
something like it) from Lenny Pitt, who recommended playing it with fake-sugar packets at restaurants.

3Constantin Fahlberg and Ira Remsen synthesized saccharin for the first time in 1878, while Fahlberg
was a postdoc in Remsen’s lab investigating coal tar derivatives. In 1900, Ovidio Rebaudi published the first
chemical analysis of ka’a he’ê, a medicinal plant cultivated by the Guaraní for more than 1500 years, now
more commonly known as Stevia rebaudiana.

4

2.2. Game Trees

Unless you’ve seen this game before4, you probably don’t have any idea how to play it
well. Nevertheless, there is a relatively simple backtracking algorithm that can play this
game—or any two-player game without randomness or hidden information—perfectly.
That is, if we drop you into the middle of a game, and it is possible to win against another
perfect player, the algorithm will tell you how to win.

A state of the game consists of the locations of all the pieces and the identity of the
current player. These states can be connected into a game tree, which has an edge from
state x to state y if and only if the current player in state x can legally move to state y .
The root of the game tree is the initial position of the game, and every path from the
root to a leaf is a complete game.

↓ ↓ ↓
→
→
→

↓ ↓ ↓

→
→

→
↓ ↓ ↓

→

→
→

↓ ↓ ↓

→
→

→

↓ ↓
→

→
→

↓

↓ ↓
→

→
→

↓
↓ ↓
→

→
→

↓
↓ ↓

→
→

→

↓
↓ ↓

→
→

→

↓
↓ ↓

→
→

→

↓
↓ ↓

→
→

→

↓
↓ ↓

→
→

→

↓
↓ ↓

→
→

→

↓

Figure 2.5. The first two levels of the fake-sugar-packet game tree.
In order to navigate through this game tree, we recursively define a game state to be

good or bad as follows:
• A game state is good if either the current player has already won, or if the current

player can move to a bad state for the opposing player.

• A game state is bad if either the current player has already lost, or if every available
move leads to a good state for the opposing player.

Equivalently, a non-leaf node in the game tree is good if it has at least one bad child, and
a non-leaf node is bad if all its children are good. By induction, any player that finds
the game in a good state on their turn can win the game, even if their opponent plays
perfectly; on the other hand, starting from a bad state, a player can win only if their
opponent makes a mistake.

This recursive definition immediately suggests a recursive backtracking algorithm,
shown Figure 2.6, to determine whether a given game state is good or bad. At its core,
this algorithm is just a depth-first search of the game tree. A simple modification of this
algorithm finds a good move (or even all possible good moves) if the input is a good
game state.

4If you have, please tell me where!

5

2. BACKTRACKING

PlayAnyGame(X ,player):
if player has already won in state X

return Good
if player has already lost in state X

return Bad
for all legal moves X Y

if PlayAnyGame(Y,¬player) = Bad
return Good

return Bad
Figure 2.6. How to play any game perfectly.

All game-playing programs are ultimately based on this simple backtracking strategy.
However, since most games have an enormous number of states, it is not possible
to traverse the entire game tree in practice. Instead, game programs employ other
heuristics5 to prune the game tree, by ignoring states that are obviously (or “obviously”)
good or bad, or at least better or worse than other states, and/or by cutting off the tree
at a certain depth (or ply) and using a more efficient heuristic to evaluate the leaves.

2.3 Subset Sum

Let’s consider a more complicated problem, called SubsetSum: Given a set X of positive
integers and target integer T , is there a subset of elements in X that add up to T? Notice
that there can be more than one such subset. For example, if X = {8, 6,7,5, 3,10, 9}
and T = 15, the answer is True, thanks to the subsets {8,7} and {7, 5,3} and {6,9}
and {5,10}. On the other hand, if X = {11,6, 5,1, 7,13, 12} and T = 15, the answer is
False.

There are two trivial cases. If the target value T is zero, then we can immediately
return True, because empty set is a subset of every set X , and the elements of the empty
set add up to zero.6 On the other hand, if T < 0, or if T 6= 0 but the set X is empty, then
we can immediately return False.

For the general case, consider an arbitrary element x ∈ X . (We’ve already handled
the case where X is empty.) There is a subset of X that sums to T if and only if one of
the following statements is true:

• There is a subset of X that includes x and whose sum is T .
• There is a subset of X that excludes x and whose sum is T .

In the first case, there must be a subset of X \ {x} that sums to T − x; in the
second case, there must be a subset of X \ {x} that sums to T . So we can solve
SubsetSum(X , T) by reducing it to two simpler instances: SubsetSum(X \ {x}, T − x)
and SubsetSum(X \ {x}, T). The resulting recursive algorithm is shown in Figure 2.7.

5A heuristic is an algorithm that doesn’t work, except in practice, sometimes.
6. . . because what else could they add up to?

6

2.3. Subset Sum

〈〈Does any subset of X sum to T?〉〉
SubsetSum(X , T):
if T = 0

return True
else if T < 0 or X =∅

return False
else

x ← any element of X
with ← SubsetSum(X \ {x}, T − x) 〈〈Recurse!〉〉
wout← SubsetSum(X \ {x}, T) 〈〈Recurse!〉〉
return (with∨wout)

Figure 2.7. A recursive backtracking algorithm for SUBSETSUM.

Correctness

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then
the elements of the empty subset sum to T , so True is the correct output. Otherwise,
if T is negative or the set X is empty, then no subset of X sums to T , so False is the
correct output. Otherwise, if there is a subset that sums to T , then either it contains
X [n] or it doesn’t, and the Recursion Fairy correctly checks for each of those possibilities.
Done.

Analysis

In order to analyze the algorithm, we have to be a bit more precise about a few
implementation details. To begin, let’s assume that the input sequence X is given as an
array X [1 .. n].

The algorithm in Figure 2.7 allows us to choose any element x ∈ X in the main
recursive case. Purely for the sake of efficiency, it is helpful to choose an element x such
that the remaining subset X \ {x} has a concise representation, which can be computed
quickly, so that we pay minimal overhead making the recursive calls. Specifically, we
will let x be the last element X [n]; then the subset X \ {x} is stored in the contiguous
subarray X [1 .. n− 1]. Passing a complete copy of this subarray to the recursive calls
would take too long—we need Θ(n) time just to make the copy—so instead, we push
only two values: the starting address of the subarray and its length. The resulting
algorithm is shown in Figure 2.8. Alternatively, we could avoid passing the same starting
address X to every recursive call by making X a global variable.

With these implementation choices, the running time T (n) of our algorithm satisfies
the recurrence T (n) ≤ 2T (n− 1) +O(1). From its resemblance to the Tower of Hanoi
recurrence, we can guess the solution T (n) = O(2n); verifying this solution is another
easy induction exercise. (We can also derive the solution directly, using either recursion
trees or annihilators, as described in the appendix.) In the worst case—for example,

7

2. BACKTRACKING

〈〈Does any subset of X [1 .. i] sum to T?〉〉
SubsetSum(X , i, T):
if T = 0

return True
else if T < 0 or i = 0

return False
else

with ← SubsetSum(X , i − 1, T − X [i]) 〈〈Recurse!〉〉
wout← SubsetSum(X , i − 1, T) 〈〈Recurse!〉〉
return (with∨wout)

Figure 2.8. A more concrete recursive backtracking algorithm for SUBSETSUM.

when T is larger than the sum of all elements of X—the recursion tree for this algorithm
is a complete binary tree with depth n, and the algorithm considers all 2n subsets of X .

Variants

With only minor changes, we can solve several variants of SubsetSum. For example,
Figure 2.9 shows an algorithm that actually constructs a subset of X that sums to T , if
one exists, or returns the error value None if no such subset exists; this algorithm uses
exactly the same recursive strategy as the decision algorithm in Figure 2.7. This algorithm
also runs in O(2n) time; the analysis is simplest if we assume a set data structure that
allows us to insert a single element in O(1) time (for example, a singly-linked list), but
in fact the running time is still O(n) even if adding an element to Y in the second-to-last
time requires O(|Y |) time. Similar variants allow us to count subsets that sum to a
particular value, or choose the best subset (according to some other criterion) that sums
to a particular value.

〈〈Return a subset of X [1 .. i] that sums to T 〉〉
〈〈or NONE if no such subset exists〉〉
ConstructSubset(X , i, T):
if T = 0

return ∅
if T < 0 or n= 0

return None
Y ← ConstructSubset(X , i − 1, T)
if Y 6= None

return Y
Y ← ConstructSubset(X , i − 1, T − X [i])
if Y 6= None

return Y ∪ {X [i]}
return None

Figure 2.9. A recursive backtracking algorithm for the construction version of SUBSETSUM.

8

2.4. The General Pattern

Most other problems that are solved by backtracking have this property: the same
recursive strategy can be used to solve many different variants of the same problem. For
example, it is easy to modify the recursive strategy described in the previous section to
determine whether a given game position is good or bad to compute a move, or even
the best possible move. For this reason, when we design backtracking algorithms, we
should aim for the simplest possible variant of the problem, computing a number or even
a single bit instead of more complex information or structure.

2.4 The General Pattern

Backtracking algorithms are commonly used to make a sequence of decisions, with the
goal of building a recursively defined structure satisfying certain constraints. Often (but
not always) this goal structure is itself a sequence. For example:

• In the n-queens problem, the goal is a sequence of queen positions, one in each row,
such that no two queens attack each other. For each row, the algorithm decides where
to place the queen.

• In the game tree problem, the goal is a sequence of legal moves, such that each move
is as good as possible for the player making it. For each game state, the algorithm
decides the best possible next move.

• In the subset sum problem, the goal is a sequence of input elements that have a
particular sum. For each input element, the algorithm decides whether to include it
in the output sequence or not.

(Hang on, why is the goal of subset sum finding a sequence? That was a deliberate design
decision. We impose a convenient ordering on the input set—by representing it using an
array as opposed to some other more amorphous data structure—that we can exploit in
our recursive algorithm.)

In each recursive call to the backtracking algorithm, we need to make exactly one
decision, and our choice must be consistent with all previous decisions. Thus, each
recursive call requires not only the portion of the input data we have not yet processed,
but also a suitable summary of the decisions we have already made. For the sake of
efficiency, the summary of past decisions should be as small as possible. For example:

• For the n-queens problem, we must pass in not only the number of empty rows, but
the positions of all previously placed queens. Here, unfortunately, we must remember
our past decisions in complete detail.

• For the game tree problem, we only need to pass in the current state of the game,
including the identity of the next player. We don’t need to remember anything about

9

2. BACKTRACKING

our past decisions, because who wins from a given game state does not depend on
the moves that created that state.7

• For the subset sum problem, we need to pass in both the remaining available integers
and the remaining target value, which is the original target value minus the sum of
the previously chosen elements. Precisely which elements were previously chosen is
unimportant.

When we design new recursive backtracking algorithms, we must figure out in advance
what information we will need about past decisions in the middle of the algorithm. If this
information is nontrivial, our recursive algorithm must solve a more general problem
than the one we were originally asked to solve. (We’ve seen this kind of generalization
before: To find the median of an unsorted array in linear time, we derived an algorithm
to find the kth smallest element for arbitrary k.)

2.5 String Segmentation (Interpunctio Verborum)

Suppose you are given a string of letters representing text in some foreign language, but
without any spaces or punctuation, and you want to break this string into its individual
constituent words. For example, you might be given the following passage from Cicero’s
famous oration in defense of Lucius Licinius Murena in 62bce, in the standard scriptio
continua of classical Latin:8

PRIMVSDIGNITASINTAMTENVISCIENTIANONPOTESTESSERESENIMSVNTPARVAE
PROPEINSINGVLISLITTERISATQVEINTERPVNCTIONIBUSVERBORVMOCCVPATAE

A fluent Latin reader would parse this string (in modern orthography) as Primus dignitas
in tam tenui scientia non potest esse; res enim sunt parvae, prope in singulis litteris atque
interpunctionibus verborum occupatae.9 Text segmentation is not only a problem in
classical Latin and Greek, but in several modern languages and scripts including Balinese,
Burmese, Chinese, Japanese, Javanese, Khmer, Lao, Thai, Tibetan, and Vietnamese.
Similar problems arise in segmenting unpunctuated text into sentences, segmenting text

7Many games violate this independence condition. For example, the standard rules of both chess and
checkers allow a player to declare a draw if the same arrangement of pieces occurs three times, and the
Chinese rules for go simply forbid repeating any earlier arrangement of stones. Thus, for these games, a
game state formally includes the entire history of previous moves.

8In·fact·most·classical·Latin·manuscripts·separated·words·with·small·dots·now·called·interpuncts. Inter-
punctuation all but disappeared by the 3rd century in favor of scriptio continua. Empty spaces between
words were introduced by Irish monks in the 8th century and slowly spread across Europe over the next
several centuries. Scriptio continua resurfaced in early 21st-century English in the form of URLs and hashtags.

9Loosely translated: “First of all, dignity in such paltry knowledge is impossible; this is trivial stuff,
mostly concerned with individual letters and the placement of points between words.” Cicero was openly
mocking the legal expertise of his friend(!) and noted jurist Servius Sulpicius Rufus, who had accused
Murena of bribery, after Murena defeated Rufus in election for consul. Murena was acquitted, thanks in
part to Cicero’s acerbic defense, although he was almost certainly guilty.

10

2.5. String Segmentation (Interpunctio Verborum)

into lines for typesetting, speech and handwriting recognition, curve simplification, and
several types of time-series analysis. For purposes of illustration, I’ll stick to segmenting
sequences of letters in the modern English alphabet into modern English words.

Of course, some strings can be decomposed into words in more than one way; for
example, the string BOTHEARTHANDSATURNSPIN can be decomposed into English words as
either BOTH·EARTH·AND·SATURN·SPIN or BOT·HEART·HANDS·AT·URNS·PIN, among many
other possibilities. For now, let’s consider an extremely simple segmentation problem:
Given a string of characters, can it be segmented into words at all?

To make the problem concrete (and language-agnostic), let’s assume that we have
access to a subroutine IsWord(w) that takes a string w as input, returns True if w
is a word, and returns False if w is not a word. For example, if you are trying to
decompose the input string input palindromes, then IsWord(ROTATOR) returns True,
and IsWord(REFLECTOR) returns False.

Just like the subset sum problem, the input structure is a sequence, this time
containing letters instead of numbers, so it is natural to consider a decision process that
consumes the input characters in order from left to right. Similarly, the output structure
is a sequence of words, so it is natural to consider a process that produces the output
words in order from left to right. Thus, jumping into the middle of the segmentation
process, we might imagine the following picture:

BLUE STEM UNIT ROBOT HEARTHANDSATURNSPIN

Here the black bar separates our past decisions—splitting the first 17 letters into four
words—from the portion of the input string that we have not yet processed.

The next stage in our imagined process is to decide where the next word in the
output sequence ends. For this specific example, there are four possibilities for the next
output word—HE, HEAR, HEART, and HEARTH. We have no idea which of these choices, if
any, is consistent with a complete segmentation of the input string. We could be “smart”
at this point and try to figure out which choices are good, but that almost always turns
out to be stupid! Instead, our backtracking algorithm “stupidly” tries every possibility by
brute force, and lets the Recursion Fairy do all the real work.
• First tentatively accept HE as the next word, and let the Recursion Fairy make the rest

of the decisions.

BLUE STEM UNIT ROBOT HE ARTHANDSATURNSPIN

• Then tentatively accept HEAR as the next word, and let the Recursion Fairy make all
remaining decisions.

BLUE STEM UNIT ROBOT HEAR THANDSATURNSPIN

• Then tentatively accept HEART as the next word, and let the Recursion Fairy make all
remaining decisions.

BLUE STEM UNIT ROBOT HEART HANDSATURNSPIN

11

2. BACKTRACKING

• Finally, tentatively accept HEARTH as the next word, and let the Recursion Fairy make
all remaining decisions.

BLUE STEM UNIT ROBOT HEARTH ANDSATURNSPIN

As long as the Recursion Fairy reports success at least once, we report success. On the
other hand, if the Recursion Fairy never reports success—in particular, if the set of legal
choices is empty—then we report failure.

None of our earlier decisions affect which choices are available now; all that matters
is the suffix of characters that we have not yet processed. In particular, a different
sequence of earlier decisions could have led us to exactly the same remaining suffix, and
therefore exactly the same set of choices.

BLUEST EMU NITRO BOT HEARTHANDSATURNSPIN

Thus, we can simplify our picture of the recursive process by discarding everything left of
the black bar:

HEARTHANDSATURNSPIN

We are now left with a simple and natural backtracking strategy: Select the first output
word, and recursively segment the rest of the input string.

To get a complete recursive algorithm, we need a base case. Our recursive strategy
breaks down when we reach the end of the input string, because there is no next word.
Fortunately, the empty string has a unique segmentation into zero words!

Putting all the pieces together, we arrive at the following recursive algorithm:

Splittable(A[1 .. n]):
if n= 0

return True
for i← 1 to n

if IsWord(A[1 .. i])
if Splittable(A[i + 1 .. n])

return True
return False

Index Formulation

In practice, passing arrays as input parameters to algorithm is rather slow; we should
really find a more compact way to describe our recursive subproblems. For purposes of
designing the algorithm, it’s incredibly useful to treat the original input array as a global
variable and then reformulate the problem and the algorithm in terms of array indices
instead of explicit subarrays.

For our string segmentation problem, the argument of any recursive call is always a
suffix A[i .. n] of the original input array. So we can reformulate our recursive problem
as follows:

12

2.5. String Segmentation (Interpunctio Verborum)

Given an index i, find a segmentation of the suffix A[i .. n].

To describe our algorithm, we define two boolean functions:
• For any indices i and j, we define IsWord(i, j) = True if and only if the substring

A[i .. j] is a word. (We’re assuming this function is given to us.)

• For any index i, we define Splittable(i) = True if and only if the suffix A[i .. n] can
be split into words. (This is the function we need to implement.)

For example, IsWord(1, n) = True if and only if the entire input string is a single word,
and Splittable(1) = True if and only if the entire input string can be segmented. Our
recursive strategy gives us the following recurrence:

Splittable(i) =

True if i > n
n
∨

j=i

�

IsWord(i, j) ∧ Splittable(j + 1)
�

otherwise

This is exactly the same algorithm as we saw earlier; the only thing we’ve changed
is the notation. The similarity is even more apparent if we rewrite the recurrence in
pseudocode:

〈〈Is the suffix A[i .. n] Splittable?〉〉
Splittable(i):
if i > n

return True
for j← i to n

if IsWord(i, j)
if Splittable(j + 1)

return True
return False

Although it may look like a trivial notational difference, using index notation instead of
array notation is an important habit, not only to speed up backtracking algorithms in
practice, but for developing dynamic programming algorithms, which we discuss in the
next chapter.

ªAnalysis

To simplify our time analysis, let’s assume that the subroutine IsWord runs in O(1)
time.10 Our algorithm calls IsWord on every prefix of the input string, and possibly

10If the set of allowable words is finite, this assumption can be enforced by storing all the words in a
data structure called a trie (pronounced “try”, even though it’s actually a tree and its name comes from the
word retrieval) and replacing the for-loop with a root-to-leaf traversal. But in fact, this assumption isn’t
necessary; the running time is still O(2n) even if IsWord requires linear time.

13

2. BACKTRACKING

calls itself recursively on every suffix of the output string. Thus, the running time of
Splittable obeys the scary-looking recurrence

T (n)≤ O(n) +
n−1
∑

i=0

T (i).

This really isn’t as bad as it looks, especially once you’ve seen the trick.
First, we replace the O(n) term with an explicit expression αn, for some unknown

(and ultimately unimportant) constant α. We also conservatively assume that the
algorithm actually makes every possible recursive call.11 Then we transform the “full
history” recurrence to a “limited history” recurrence by subtracting the recurrence for
T (n− 1), as follows:

T (n) = αn+
n−1
∑

i=0

T (i)

T (n− 1) = α(n− 1) +
n−2
∑

i=0

T (i)

=⇒ T (n)− T (n− 1) = α+ T (n− 1)

This final recurrence simplifies to T (n) = 2T (n−2)+α. At this point, we can confidently
guess that T (n) = O(2n); indeed, this upper bound is not hard to prove by induction
from the original full-history recurrence.

Moreover, this analysis is tight. There are exactly 2n−1 possible ways to segment
a string of length n—each input character either ends a word or doesn’t, except the
last input character, which always ends the last word. In the worst case, the algorithm
explores each of these 2n−1 possibilities.

Variants

Now that we have the basic recursion pattern in hand, we can use it to solve many
different variants of the segmentation problem, just as we did for the subset sum problem.
Here I’ll describe just one example; more variations are considered in the exercises. As
usual, the original input to our problem is an array A[1 .. n].

If a string can be segmented in more than one sequence of words, we may want to
find the best segmentation according to some criterion; conversely, if the input string
cannot be segmented into words, we may want to compute the best segmentation we can

11This assumption is wildly conservative for English word segmentation, since most English stings are
not words, but not for the similar problem of segmenting sequences of English words into grammatically
correct English sentences. Consider, for example, a sequence of n copies of the word “buffalo”, or n copies
of the work “police”, or n copies of the word “can”. (At the Moulin Rouge, dances that are preservable in
metal cylinders by other dances have the opportunity to fire dances that happen in prison restroom trash
receptacles.)

14

2.6. Longest Increasing Subsequence

find, rather than merely reporting failure. To meet both of these goals, suppose we have
access to a function Score that takes a string w as input and returns a numerical value.
For example, we might assign higher scores to longer and/or more frequent words, and
lower negative scores to longer and/or more ridiculous non-words. Our goal is to find a
segmentation that maximizes the sum of the scores of the segments.

For any index i, let MaxScore(i) denote the maximum score of any segmentation of
the suffix A[i .. n]; we need to computeMaxScore(1). This function satisfies the following
recurrence:

MaxScore(i) =

(

0 if i > n

max
i≤ j≤n

�

Score(A[i .. j]) + MaxScore(j + 1)
�

otherwise

This is essentially the same recurrence as the one we developed for Splittable; the only
difference is that the boolean operations ∨ and ∧ have been replaced by the numerical
operations max and +.

2.6 Longest Increasing Subsequence

For any sequence S, a subsequence of S is another sequence from S obtained by deleting
zero or more elements, without changing the order of the remaining elements; the
elements of the subsequence need not be together in the original sequence S. For
example, when you drive down a major street in any city, you drive through a sequence
of intersections with traffic lights, but you only have to stop at a subsequence of those
intersections, where the traffic lights are red. If you’re very lucky, you never stop at all:
the empty sequence is a subsequence of S. On the other hand, if you’re very unlucky,
you may have to stop at every intersection: S is a subsequence of itself.

As another example, the strings BENT, ACKACK, SQUARING, and SUBSEQUENT are all
subsequences of the string SUBSEQUENCEBACKTRACKING, as are the empty string and
the entire string SUBSEQUENCEBACKTRACKING, but the strings QUEUE and EQUUS are not.
A subsequence whose elements are contiguous in the original sequence is called a
substring; for example, MASHER and LAUGHTER are both subsequences of MANSLAUGHTER,
but only LAUGHTER is a substring.

Now suppose we are given a sequence of integers, and we need to find the longest
subsequence whose elements are in increasing order. More concretely, the input is an
integer array A[1 .. n], and we need to compute the longest possible sequence of indices
1≤ i1 < i2 < · · ·< i` ≤ n such that A[ik]< A[ik+1] for all k.

One natural approach to building this longest increasing subsequence is to decide,
for each index j in order from 1 to n, whether or not to include A[j] in the subsequence.
Jumping into the middle of this decision sequence, we might imagine the following
picture:

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

15

2. BACKTRACKING

As in our segmentation example, the black bar separates our past decisions from the
portion of the input we have not yet processed. Numbers we have already decided to
include are highlighted; numbers we have already decided to exclude are grayed out.
(Notice that the numbers we’ve decided to include are increasing!) Our algorithm must
decide whether or not to include the number immediately after the black bar.

In this example, we cannot include 5, because then the selected numbers would no
longer be in increasing order. So let’s skip ahead to the next decision:

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

Now we can include 8, but it’s not obvious whether we should. Rather than trying to be
“smart”, our backtracking algorithm will use simple brute force.
• First tentatively include the 8, and let the Recursion Fairy make the rest of the

decisions.

• Then tentatively exclude the 8, and let the Recursion Fairy make the rest of the
decisions.

Whichever choice leads to a longer increasing subsequence is the right one. (This is
precisely the same recursion pattern we used to solve the subset sum problem.)

Now for the key question: What do we need to remember about our past decisions? We
can only include A[j] if the resulting subsequence is in increasing order. If we assume
(inductively!) that the numbers previously selected from A[1 .. j − 1] are in increasing
order, then we can include A[j] if and only if A[j] is larger than the last number selected
from A[1 .. j − 1]. Thus, the only information we need about the past is the last number
selected so far. We can now revise our pictures by erasing everything we don’t need:

6 5 8 9 7 9 3 2 3 8 4 6 2 7

6 8 9 7 9 3 2 3 8 4 6 2 7

So the problem our recursive strategy is actually solving is the following:

Given an integer prev and an array A[1 .. n], find the longest increasing
subsequence of A in which every element is larger than prev.

As usual, our recursive strategy requires a base case. Our current strategy breaks
down when we get to the end of the array, because there is no “next number” to consider.
But an empty array has exactly one subsequence, namely, the empty sequence. Vacuously,
every element in the empty sequence is larger than whatever value you want, and every
pair of elements in the empty sequence appears in increasing order. Thus, the longest
increasing subsequence of the empty array has length 0.

Here’s the resulting recursive algorithm:

16

2.6. Longest Increasing Subsequence

LISbigger(prev, A[1 .. n]):
if n= 0

return 0
else if A[1]≤ prev

return LISbigger(prev, A[2 .. n])
else

wout← LISbigger(prev, A[2 .. n])
with ← LISbigger(A[1], A[2 .. n]) + 1
return max{with,wout}

Okay, but remember that passing arrays around on the call stack is expensive; let’s
try to rephrase everything in terms of array indices, assuming that the array A[1 .. n] is a
global variable. The integer prev is typically an array element A[i], and the remaining
array is always a suffix A[j .. n] of the original input array. So we can reformulate our
recursive problem as follows:

Given two indices i and j, where i < j, find the longest increasing
subsequence of A[j .. n] in which every element is larger than A[i].

Let LISbigger(i, j) denote the length of the longest increasing subsequence of A[j .. n] in
which every element is larger than A[i]. Our recursive strategy gives us the following
recurrence:

LISbigger(i, j) =

0 if j > n

LISbigger(i, j + 1) if A[i]≥ A[j]
max{LISbigger(i, j + 1), 1+ LISbigger(j, j + 1)} otherwise

Alternatively, if you prefer pseudocode:

LISbigger(i, j):
if n= 0

return 0
else if A[1]≤ prev

return LISbigger(i, j + 1)
else

wout← LISbigger(i, j + 1)
with ← LISbigger(j, j + 1) + 1
return max{with,wout}

Finally, we need to connect our recursive strategy to the original problem: Finding
the longest increasing subsequence of an array with no other constraints. The simplest
approach is to add an artificial sentinel value −∞ to the beginning of the array.

LIS(A[1 .. n]):
A[0]←−∞
return LISbigger(0.1)

17

2. BACKTRACKING

The running time of LISbigger satisfies the Hanoi recurrence T (n)≤ 2T (n−1)+O(1),
which as usual implies that T (n) = O(2n). We really shouldn’t be surprised by this
running time; in the worst case, the algorithm examines each of the 2n subsequences of
the input array.

2.7 Longest Increasing Subsequence, Take 2

This is not the only backtracking strategy we can use to find longest increasing subse-
quences. For example, instead of considering the input array one element at a time, we
could try to construct the output sequence one element at a time. That is, instead of “Is
A[i] is the next element of the output sequence?”, we could ask directly, “Where is the
next element of the output sequence, if any?”

Jumping into the middle of this strategy, we might be faced with the following picture.
Here we just decided to include the 6 just left of the black bar in our output sequence,
and we need to decide which element to the right of the bar to include next.

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

Of course, we only need to consider numbers on the right that are bigger than 6.

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

We have no idea which of those larger numbers is the correct choice, and trying to
cleverly figure out which numbers is the right choice is just going to get us into trouble.
Instead, our recursive backtracking algorithm will try every possibility by brute force.

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

The subset of numbers we can consider as the next element depends only on the
last number we decided to include. Thus, we can simplify our picture of the decision
procedure by discarding all the other numbers that we’ve already processed.

6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 7

18

2.8. Optimal Binary Search Trees

The remaining numbers are just a suffix of the original input array. Thus, if we think of
the input array A[1 .. n] as a global variable, we can formalize our problem in terms of
indices as follows:

Given an index i, find the longest increasing subsequence of A[i .. n] that
begins with A[i].

Let LISfirst(i) denote the length of the longest increasing subsequence of A[i .. n] that
begins with A[i]. We can now phrase our recursive backtracking strategy as follows, first
as a recurrence and then as pseudocode:

LISfirst(i) = 1+max
�

LISfirst(j)
�

� j > i and A[j]> A[i]
	

LISfirst(i):
best← 0
for j← i + 1 to n

if A[j]> A[i]
best←max{best, 1+ LISfirst(j)}

return best

〈〈Hang on. . .what happened to the base case?〉〉 ÃÃÃÃÃ

Finally, we need to reconnect this recurrence to our original problem—finding the
longest increasing subsequence without knowing its first element. One natural approach
that works is to try all possible first elements by brute force. Equivalently, we can
add a sentinel element −∞ to the beginning of the array, find the longest increasing
subsequence that starts with the sentinel, and finally ignore the sentinel.

LIS(A[1 .. n]):
best← 0
for i← 1 to n

best←max{best,LISfirst(1)}
return best

LIS(A[1 .. n]):
A[0]←−∞
return LISfirst(0)− 1

2.8 Optimal Binary Search Trees

Our final example combines recursive backtracking with the divide-and-conquer strategy.
Recall that the running time for a successful search in a binary search tree is proportional
to the number of ancestors of the target node.12 As a result, the worst-case search time is
proportional to the depth of the tree. Thus, to minimize the worst-case search time, the
height of the tree should be as small as possible; by this metric, the ideal tree is perfectly
balanced.

12An ancestor of a node v is either the node itself or an ancestor of the parent of v. A proper ancestor
of v is either the parent of v or a proper ancestor of the parent of v.

19

2. BACKTRACKING

In many applications of binary search trees, however, it is more important to minimize
the total cost of several searches rather than the worst-case cost of a single search. If x
is a more frequent search target than y , we can save time by building a tree where the
depth of x is smaller than the depth of y , even if that means increasing the overall depth
of the tree. A perfectly balanced tree is not the best choice if some items are significantly
more popular than others. In fact, a totally unbalanced tree with depth Ω(n) might
actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array
of keys A[1 .. n] and an array of corresponding access frequencies f [1 .. n]. Our task is
to build the binary search tree that minimizes the total search time, assuming that there
will be exactly f [i] searches for each key A[i].

Before we think about how to solve this problem, we should first come up with a
good recursive definition of the function we are trying to optimize! Suppose we are also
given a binary search tree T with n nodes. Let vi denote the node that stores A[i], and
let r be the index of the root node. Then ignoring constant factors, the total cost of
performing all the binary searches is given by the following expression:

Cost(T, f [1 .. n]) =
n
∑

i=1

f [i] ·#ancestors of vi in T (∗)

The root vr is an ancestor of every node in the tree. If i < r, then all ancestors of vi in
the left subtree; similarly, if i > r, all other ancestors of vi are in the right subtree. Thus,
we can partition the cost function into three parts as follows:

Cost(T, f [1 .. n]) =
n
∑

i=1

f [i] +
r−1
∑

i=1

f [i] ·#ancestors of vi in left(T)

+
n
∑

i=r+1

f [i] ·#ancestors of vi in right(T)

Now the second and third summations look exactly like our original definition (∗) for
Cost(T, f [1 .. n]). Simple substitution now gives us a recurrence for Cost:

Cost(T, f [1 .. n]) =
n
∑

i=1

f [i] + Cost(left(T), f [1 .. r − 1])

+ Cost(right(T), f [r + 1 .. n])

The base case for this recurrence is, as usual, n= 0; the cost of performing no searches
in the empty tree is zero.

Now our task is to compute the tree Topt that minimizes this cost function. Suppose
we somehow magically knew that the root of Topt is vr . Then the recursive definition of
Cost(T, f) immediately implies that the left subtree left(Topt) must be the optimal search
tree for the keys A[1 .. r − 1] and access frequencies f [1 .. r − 1]. Similarly, the right

20

2.8. Optimal Binary Search Trees

subtree right(Topt) must be the optimal search tree for the keys A[r + 1 .. n] and access
frequencies f [r + 1 .. n]. Once we choose the correct key to store at the root, the
Recursion Fairy automatically constructs the rest of the optimal tree.

More generally, let OptCost(i, k) denote the total cost of the optimal search tree for
the frequencies f [i .. k]. This function obeys the following recurrence.

OptCost(i, k) =

0 if i > k

k
∑

j=i

f [i] + min
i≤r≤k

�

OptCost(i, r − 1) + OptCost(r + 1, k)
	

otherwise

The base case correctly indicates that the minimum possible cost to perform zero searches
into the empty set is zero!

This recursive definition can be translated mechanically into a recursive backtracking
algorithm, whose running time is, not surprisingly, exponential. In the next chapter,
we’ll see how to reduce the running time to polynomial.

ªDetailed time analysis

The running time of the previous backtracking algorithm obeys the recurrence

T (n) = Θ(n) +
n
∑

k=1

�

T (k− 1) + T (n− k)
�

.

The Θ(n) term comes from computing the total number of searches
∑n

i=1 f [i]. Yeah,
that’s one ugly recurrence, but it’s easier to solve than it looks. To transform it into a
more familiar form, we regroup and collect identical terms, subtract the recurrence for
T (n− 1) to get rid of the summation, and then regroup again.

T (n) = Θ(n) + 2
n−1
∑

k=0

T (k)

T (n− 1) = Θ(n− 1) + 2
n−2
∑

k=0

T (k)

T (n)− T (n− 1) = Θ(1) + 2T (n− 1)

T (n) = 3T (n− 1) +Θ(1)

The solution T(n) = Θ(3n) now follows immediately by induction.
Let me emphasize that our recursive algorithm does not examine all possible binary

search trees! The number of binary search trees with n nodes satisfies the recurrence

N(n) =
n−1
∑

r=1

�

N(r − 1) · N(n− r)
�

,

21

2. BACKTRACKING

which has the closed-from solution N(n) = Θ(4n/
p

n). Our algorithm saves considerable
time by searching independently for the optimal left and right subtrees. A full enumeration
of binary search trees would consider all possible pairings of left and right subtrees;
hence the product in the recurrence for N(n).

Exercises

1. Describe and analyze algorithms for the following generalizations of SubsetSum:

(a) Given an array X [1 .. n] of positive integers and an integer T , compute the number
of subsets of X whose elements sum to T .

(b) Given two arrays X [1 .. n] and W [1 .. n] of positive integers and an integer T ,
where each W [i] denotes the weight of the corresponding element X [i], compute
the maximum weight subset of X whose elements sum to T . sIf no subset of X
sums to T , your algorithm should return −∞.

2. (a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A
and B is both a subsequence of A and a subsequence of B. Give a simple recursive
definition for the function lcs(A, B), which gives the length of the longest common
subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A
and B is another sequence that contains both A and B as subsequences. Give a
simple recursive definition for the function scs(A, B), which gives the length of
the shortest common supersequence of A and B.

(c) Call a sequence X [1 .. n] oscillating if X [i]< X [i + 1] for all even i, and X [i]>
X [i + 1] for all odd i. Give a simple recursive definition for the function los(A),
which gives the length of the longest oscillating subsequence of an arbitrary array
A of integers.

(d) Give a simple recursive definition for the function sos(A), which gives the length
of the shortest oscillating supersequence of an arbitrary array A of integers.

(e) Call a sequence X [1 .. n] accelerating if 2 ·X [i]< X [i−1]+X [i+1] for all i. Give
a simple recursive definition for the function lxs(A), which gives the length of the
longest accelerating subsequence of an arbitrary array A of integers.

For more backtracking exercises, see the next chapter!

© Copyright 2018 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

	Backtracking
	n Queens
	Game Trees
	Subset Sum
	The General Pattern
	String Segmentation (Interpunctio Verborum)
	Longest Increasing Subsequence
	Longest Increasing Subsequence, Take 2
	Optimal Binary Search Trees

