
dvau dvau pūrvavikalpau yā mı̄layitvā jāyate sam. khyā
sā uttaramātrān. ām. sam. khyāyā es. a ni(r)deśah.
[The count is obtained by adding the permutations of the two previous.
This is the way to the count of succeeding mātrās.]

— Virahān. ka, Vr. tajātisamuccaya (c. 700),transcribed and translated by Jayant Shah (2012)
Those who cannot remember the past are condemned to repeat it.

— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,
The Life of Reason, Book I: Introduction and Reason in Common Sense (1905)

“I wouldn’t ask too much of her,” I ventured. “You can’t repeat the past.”
“Can’t repeat the past?” he cried incredulously. “Why of course you can!”
He looked around him wildly, as if the past were lurking here in the shadow of his house,
just out of reach of his hand.

— F. Scott Fitzgerald, The Great Gatsby (1925)
You know what a learning experience is?
A learning experience is one of those things that says,
“You know that thing you just did? Don’t do that.”

— Douglas Adams, The Salmon of Doubt (2002)

CHAPTER3
Dynamic Programming

Status: Beta
Some redundancy with previous chapter; needs editing pass

3.1 Mātrāvr.tta

One of the earliest examples of recursion arose in India more than 2000 years ago, in the
study of poetic meter, or prosody. Classical Sanskrit poetry distinguishes between two
types of syllables: light (laghu) and heavy (guru). In one class of meters, variously called
mātrāvr. tta or mātrāmeru or mātrāchanda. , each line of poetry consists of a fixed number
of “beats” (mātrā), where each short syllable counts as one beat and each long syllable
counts as two beats. The formal study of mātrā-vr. tta dates back to the Chandah. śāstra,
written by the scholar Piṅgala between 600bce and 200bce. Piṅgala observed that there
are exactly five 4-beat meters:

—— —•• •—• ••— ••••

© Copyright 2018 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1
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3. DYNAMIC PROGRAMMING

(Here each “—“ represents a long syllable and each “•” represents a short syllable.1)
Although Piṅgala’s text hints at a systematic rule for counting meters with a given

number of beats,2 it took about a millenium for that rule to be stated explicitly. In the 7th
century ce, another Indian scholar named Virahān. ka wrote a commentary on Piṅgala’s
work, in which he observed that the number of meters with n beats is the sum of the
number of meters with (n− 2) beats the number of meters with (n− 1) beats. In more
modern notation, Virahān. ka’s observation gives us a recurrence for the total number
M(n) of n-beat meters:

M(n) = M(n− 2) +M(n− 1)

It is not hard to see that M(0) = 1 (there is only one empty meter) and M(1) = 1 (the
only one-beat meter consists of a single short syllable).

The same recurrence reappeared in Europe about 500 years after Virahān. ka, in
Leonardo Pisano’s 1202 treatise Liber Abaci, one of the most influential early European
works on “algorism”. The modern Fibonacci numbers are defined using Virahān. ka’s
recurrence, but with different base cases:

Fn =











0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

In particular, we have M(n) = Fn+1 for all n.

Recursion Can Be Slow

The recursive definition of Fibonacci numbers immediately gives us a recursive algorithm
for computing them. Here is the same algorithm written in pseudocode:

RecFibo(n):
if n= 0

return 0
else if n= 1

return n
else

return RecFibo(n− 1) +RecFibo(n− 2)

Unfortunately, this naive recursive algorithm is horribly slow. Except for the recursive
calls, the entire algorithm requires only a constant number of steps: one comparison

1In Morse code, a “dah” traditionally has the same length as three “dits”, not two.
2The Chandah. śāstra contains two systematic rules for listing all meters with a given number of syllables,

which correspond roughly to writing numbers in binary from left to right or from right to left. The same
text includes a recursive algorithm to compute 2n (the number of meters with n syllables) by repeated
squaring, and (arguably) a recursive algorithm to compute binomial coefficients (the number of meters
with k short syllables and n syllables overall).

2



3.1. Mātrāvr.tta

and possibly one addition. If T (n) represents the number of recursive calls to RecFibo,
we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers themselves! Writing out
the first several values of T (n) quickly suggests the closed-form solution T(n) = 2Fn+1−1,
which we can quickly verify by induction (hint, hint). So computing Fn using this
algorithm takes about twice as long as just counting to Fn. Methods beyond the scope
of this book imply that Fn = Θ(φn), where φ = (

p
5+ 1)/2≈ 1.61803 is the so-called

golden ratio. In short, the running time of this recursive algorithm is exponential in n.
We can also see this exponential growth directly as follows. Think of the recursion

tree for RecFibo as a big binary tree of additions, with only 0s and 1s at the leaves.
Since the eventual output is Fn, exactly Fn of the leaves must have value 1; these leaves
represent the calls to RecRibo(1). An easy inductive argument (hint, hint) implies that
RecFibo(0) is called exactly Fn−1 times. (If we just want an asymptotic bound, it’s
enough to observe that the number of calls to RecFibo(0) is at most the number of calls
to RecFibo(1).) Thus, the recursion tree has exactly Fn + Fn−1 = Fn+1 = O(Fn) leaves,
and therefore, because it’s a full binary tree, 2Fn+1 − 1= O(Fn) nodes altogether.
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F1 F0
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F2 F1
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F1 F0
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F2 F1
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F2

F1 F0
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Figure 3.1. The recursion tree for computing F7 ; arrows represent recursive calls.

Memo(r)ization: Remember Everything

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same
Fibonacci numbers over and over and over. A single call to RecFibo(n) results in one
recursive call to RecFibo(n− 1), two recursive calls to RecFibo(n− 2), three recursive
calls to RecFibo(n− 3), five recursive calls to RecFibo(n− 4), and in general Fk−1
recursive calls to RecFibo(n− k) for any integer 0 ≤ k < n. Each call is recomputing
some Fibonacci number from scratch.
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3. DYNAMIC PROGRAMMING

We can speed up our recursive algorithm considerably just by writing down the
results of our recursive calls and looking them up again if we need them later. This
process was dubbed memoization by Richard Michie in the late 1960s.3

MemFibo(n):
if n= 0

return 0
else if n= 1

return 1
else

if F[n] is undefined
F[n]←MemFibo(n− 1) +MemFibo(n− 2)

return F[n]

Memoization clearly decreases the running time of the algorithm, but by how much?
If we actually trace through the recursive calls made by MemFibo, we find that the
array F[ ] is filled from the bottom up: first F[2], then F[3], and so on, up to F[n]. This
pattern can be verified by induction: Each entry F[i] is filled only after its predecessor
F[i − 1]. If we ignore the time spent in recursive calls, it requires only constant time to
evaluate the recurrence for each Fibonacci number Fi. But by design, the recurrence
for Fi is evaluated only once for each index i. We conclude that MemFibo performs only
O(n) additions, an exponential improvement over the naïve recursive algorithm!
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Figure 3.2. The recursion tree for F7 trimmed by memoization. Downward green arrows indicate writing into thememoization array; upward red arrows indicate reading from the memoization array.

3“My name is Elmer J. Fudd, millionaiwe. I own a mansion and a yacht.”
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3.1. Mātrāvr.tta

Dynamic Programming: Fill Deliberately

But once we see how the array F[ ] is filled, we can replace the recursion with a simple
loop that intentionally fills the array in order, instead of relying on a more complicated
recursive algorithm to do it for us “accidentally”.

IterFibo(n):
F[0]← 0
F[1]← 1
for i← 2 to n

F[i]← F[i − 1] + F[i − 2]
return F[n]

Now the time analysis is immediate: IterFibo clearly uses O(n) additions and stores
O(n) integers.

This is our first explicit dynamic programming algorithm. The dynamic programming
paradigm was formalized and popularized by Richard Bellman in the mid-1950s, while
working at the RAND Corporation, although he was far from the first to use the technique.
In particular, the iterative algorithm for Fibonacci numbers was already proposed by
Virahān. ka and later Sanskrit prosodists in the 12th century, and again by Fibonacci at
the turn of the 13th century!4

Many years after the fact, Bellman claimed that he deliberately chose the name
“dynamic programming” to hide the mathematical character of his work from his military
bosses, who were actively hostile toward anything resembling mathematical research.5

The word “programming” does not refer to writing code, but rather to the older sense of
planning or scheduling, typically by filling in a table. For example, sports programs and
theater programs are schedules of important events (with ads); television programming

4More general dynamic programming techniques were independently deployed several times in the
late 1930s and early 1940s. For example, Pierre Massé used dynamic programming algorithms to optimize
the operation of hydroelectric dams in France during the Vichy regime. John von Neumann and Oskar
Morgenstern developed dynamic programming algorithms to determine the winner of any two-player game
with perfect information (for example, chess). Alan Turing and his cohorts used similar methods as part
of their code-breaking efforts at Bletchley Park. Both Massé’s work and von Neumann and Mergenstern’s
work were first published in 1944, six years before Bellman coined the phrase “dynamic programming”. The
details of Turing’s “Banburismus” were kept secret until the mid-1980s.

5Charles Erwin Wilson became Secretary of Defense started in January 1953, after a dozen years as the
president of General Motors. “Engine Charlie” reorganized the Department of Defense and significantly
decrease its budget in his first year in office, with the explicit goal of running the Department much more
like an industrial corporation. Bellman described Wilson in his 1984 autobiography as follows:

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense,
and he actually had a pathological fear and hatred of the word “research”. I’m not using the term
lightly; I’m using it precisely. His face would suffuse, he would turn red, and he would get violent if
people used the term “research” in his presence. You can imagine how he felt, then, about the term
“mathematical”. . . . I felt I had to do something to shield Wilson and the Air Force from the fact that I
was really doing mathematics inside the RAND Corporation. What title, what name, could I choose?

However, Bellman’s first published use of the term “dynamic programming” appeared in 1952, months before
Wilson took office, so his story is at least slightly embellished.

5



3. DYNAMIC PROGRAMMING

involves filling each available time slot with a show (and ads); degree programs are
schedules of classes to be taken (with ads). The Air Force funded Bellman and others to
develop methods for constructing training and logistics schedules, or as they called them,
“programs”. The word “dynamic” originally referred to the multistage, time-varying
processes that Bellman and his colleagues were attempting to optimize.

Thanks in part to Bellman’s proselytizing, dynamic programming is now a standard
tool for multistage planning in economics, robotics, control theory, and several other
fields.

Don’t Remember Everything After All

In many dynamic programming algorithms, it is not necessary to retain all intermediate
results through the entire computation. For example, we can significantly reduce the
space requirements of our algorithm IterFibo by maintaining only the two newest
elements of the array:

IterFibo2(n):
prev← 1
curr← 0
for i← 1 to n

next← curr+ prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F−1 = 1 so that
IterFibo2(0) returns the correct value 0.) Although saving space can be absolutely
crucial in practice, we generally won’t focus on space issues in this book.

ª3.2 Aside: Even Faster Fibonacci Numbers

Although the previous algorithm is simple and attractive, it is not the fastest algorithm
to compute Fibonacci numbers. We can derive a faster algorithm by exploiting the
following matrix reformulation of the Fibonacci recurrence:

�

0 1
1 1

��

x
y

�

=

�

y
x + y

�

In other words, multiplying a two-dimensional vector by the matrix
�

0 1
1 1

�

has exactly the
same effect as one iteration of the inner loop of IterFibo2. It follows that multiplying
by the matrix n times is the same as iterating the loop n times:

�

0 1
1 1

�n �
1
0

�

=

�

Fn−1
Fn

�

.
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So if we want the nth Fibonacci number, we just have to compute the nth power of
the matrix

�

0 1
1 1

�

. If we use repeated squaring, computing the nth power of something
requires only O(log n) multiplications.6 In this case, that means O(log n) 2× 2 matrix
multiplications, each of which reduces to a constant number of integer multiplications and
additions. Thus, we can compute Fn in only O(logn) integer arithmetic operations.

We can acheive the same speedup using the identity Fn = FmFn−m−1 + Fm+1Fn−m,
which holds (by induction!) for all integers m and n. In particular, this identity implies
the following mutual recurrence for pairs of adjacent Fibonacci numbers:

F2n−1 = F2
n−1 + F2

n

F2n = Fn(Fn−1 + Fn+1) = Fn(2Fn−1 + Fn)

(We can also derive this mutual recurrence directly from the matrix-squaring algorithm.)
This recurrence translates directly into the following recursive algorithm:

〈〈Compute the pair Fn−1, Fn〉〉
FastRecFibo(n) :
if n= 1

return 0,1
m← bn/2c
hprv,hcur← FastRecFibo(m) 〈〈Fm−1, Fm〉〉
prev← hprv2 + hcur2 〈〈F2m−1〉〉
curr← hcur · (2 · hprv+ hcur) 〈〈F2m〉〉
next← prev+ curr 〈〈F2m+1〉〉
if n is even

return prev, curr
else

return curr,next

Our standard recursion tree technique implies that this algorithm performs O(log n)
integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which was
already an exponential speedup over our original recursive algorithm. Right?

Whoa! Not so fast!

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number
is approximately n log10φ ≈ n/5 decimal digits long, or n log2φ ≈ 2n/3 bits. So we
can’t possibly compute Fn in logarithmic time — we need Ω(n) time just to write down
the answer!

The way out of this apparent paradox is to observe that we can’t perform arbitrary-
precision arithmetic in constant time. Let M(n) denote the time required to multiply

6Piṅgala described a repeated squaring algorithm to compute powers of 2 in his Chandah. śāstra.
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3. DYNAMIC PROGRAMMING

two n-digit numbers. The running time of FastRecFibo satisfies the recurrence T (n) =
T (bn/2c) + M(n), which solves to T (n) = O(M(n)) via recursion trees. The fastest
integer multiplication algorithm known (as of 2018) runs in time O(n log n2O(log∗ n)), so
that is also the running time of the fastest algorithm known (as of 2018) to compute
Fibonacci numbers.

Is this algorithm slower than our “linear-time” iterative algorithms? Actually, no!
Addition isn’t free, either! Adding two n-digit numbers takes O(n) time, so the running
time of the iterative algorithms IterFibo and IterFibo2 is O(n2). (Do you see why?)
So FastRecFibo is significantly faster than the iterative algorithms, but not exponentially
faster.

In the original recursive algorithm, the extra cost of arbitrary-precision arithmetic
is overwhelmed by the huge number of recursive calls. The correct recurrence is
T (n) = T (n− 1) + T (n− 2) +O(n), which still has the solution T (n) = O(φn).

3.3 Interpunctio Verborum Redux

For our next dynamic programming algorithm, let’s consider the text segmentation
problem from the previous chapter. We are given a string A[1 .. n] and (for purposes
of analysis) a subroutine IsWord that can determine whether a given string is a word
(whatever that means), and we want to know whether A can be partitioned into a
sequence of words.

We solved this problem by recursively computing the boolean value CanSplit(i),
which is defined to be True if and only if the suffix A[i .. n] can be split into a sequence
of words. We need to compute CanSplit(1). This function satisfies the recurrence

CanSplit(i) =











True if i > n
n
∨

j=i

�

IsWord(i, j) ∧ CanSplit( j + 1)
�

otherwise

where IsWord(i, j) is shorthand for IsWord(A[i .. j]). This recurrence translates directly
into a recursive backtracking algorithm that calls the IsWord subroutine O(2n) times in
the worst case.

But for any fixed string A[1 .. n], there are only n different ways to call the recursive
function CanSplit(i), namely one for each possible value of i where 1≤ i ≤ n+ 1, and
only O(n2) different ways to call IsWord(i, j), namely one for each pair (i, j) with
1 ≤ i ≤ j ≤ n. Why are we spending exponential time computing only a polynomial
amount of stuff?

Because each recursive subproblem is specified by an integer between 1 and n+ 1,
we can memoize the recurrence into an array CanSplit[1 .. n + 1]. Each subproblem
CanSplit(i) depends only on results of subproblems CanSplit( j) where j > i, so the
memoized recursive algorithm fills the array in decreasing index order. If we fill the array
in this order deliberately, we obtain the following dynamic programming algorithm:

8
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CanSplit(A[1 .. n]):
CanSplit[n+ 1]← True
for i← n down to 1

CanSplit[i]← False
for j← i to n

if IsWord(i, j) and CanSplit[ j + 1]
CanSplit[i]← True

return CanSplit[1]

The algorithm makes O(n2) calls to IsWord, spends O(n2) time outside IsWord, and
uses O(n) space.

3.4 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Dynamic program-
ming algorithms store the solutions of intermediate subproblems, often but not always in
some kind of array or table. Many algorithms students make the mistake of focusing
on the table (because tables are easy and familiar) instead of the much more important
(and difficult) task of finding a correct recurrence. As long as we memoize the correct
recurrence, an explicit table isn’t really necessary, but if the recursion is incorrect, nothing
works.

Dynamic programming is not about filling in tables.
It’s about smart recursion!

Dynamic programming algorithms are almost always developed in two distinct stages.
1. Formulate the problem recursively. Write down a recursive formula or algorithm

for the whole problem in terms of the answers to smaller subproblems. This is the
hard part. A complete recursive formulation has two parts:

(a) Specification. Describe the problem that you want to solve recursively, in
coherent and precise English—not how to solve that problem, but what problem
you’re trying to solve. Without this specification, it is impossible, even in principle,
to determine whether your solution is correct.7

(b) Solution. Give a clear recursive formula or algorithm for the whole problem in
terms of the answers to smaller instances of exactly the same problem.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that
starts with the base cases of your recurrence and works its way up to the final solution,
by considering intermediate subproblems in the correct order. This stage can be
broken down into several smaller, relatively mechanical steps:
7In my algorithms classes, as official course policy, omitting this specification is an automatic zero, even

if the rest of the algorithm is correct.
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3. DYNAMIC PROGRAMMING

(a) Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input? For example, the argument
to RecFibo is always an integer between 0 and n.

(b) Choose a memoization data structure. Find a data structure that can store the
solution to every subproblem you identified in step (a). This is usually but not
always a multidimensional array.

(c) Identify dependencies. Except for the base cases, every subproblem depends
on other subproblems—which ones? Draw a picture of your data structure, pick
a generic element, and draw arrows from each of the other elements it depends
on. Then formalize your picture.

(d) Find a good evaluation order. Order the subproblems so that each one comes
after the subproblems it depends on. You should consider the base cases first,
then the subproblems that depends only on base cases, and so on, eventually
building up to the original top-level problem. The dependencies you identified in
the previous step define a partial order over the subproblems; you need to find a
linear extension of that partial order. Be careful!

(e) Analyze space and running time. The number of distinct subproblems deter-
mines the space complexity of your memoized algorithm. To compute the total
running time, add up the running times of all possible subproblems, assuming
deeper recursive calls are already memoized. You can actually do this immediately
after step (a).

(f) Write down the algorithm. You know what order to consider the subproblems,
and you know how to solve each subproblem. So do that! If your data structure is
an array, this usually means writing a few nested for-loops around your original
recurrence.

Of course, you have to prove that each of these steps is correct. If your recurrence is
wrong, or if you try to build up answers in the wrong order, your algorithm won’t work!

3.5 Warning: Greed is Stupid

If we’re incredibly lucky, we can bypass all the recurrences and tables and so forth, and
solve the problem using a greedy algorithm. The general greedy strategy is find the best
possible initial directly, without looking at any recursive subproblems, and then let the
Recursion Fairy make all the other decisions. While this approach seems very natural,
it almost never works; optimization problems that can be solved correctly by a greedy
algorithm are very rare. Nevertheless, for many problems that should be solved by
dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the longest increasing subsequence problem
might look for the smallest element of the input array, accept that element as the start of
the target subsequence, and then recursively look for the longest increasing subsequence

10
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to the right of that element. If this sounds like a stupid hack to you, pat yourself on the
back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under
all the rules about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
Well. . . hardly ever.8

Because the greedy approach is so incredibly tempting, but so rarely correct, I strongly
advocate the following policy in any algorithms course, even (or perhaps especially) for
courses that do not normally ask for proofs of correctness.

You will not receive any credit for any greedy algorithm for any problem,
on any homework or exam, even if the algorithm is correct,

without a formal proof of correctness.

Moreover, the vast majority of problems for which students are tempted to submit a
greedy algorithm are actually best solved using dynamic programming. So I always offer
the following advice to my algorithms students.

Whenever you write—or even think—the word “greedy”,
your subconscious mind is telling you to use dynamic programming.

Listen to it.

We will see techniques for proving greedy algorithms correct in the next chapter.

3.6 Longest Increasing Subsequence

Another problem we considered in the previous chapter was computing the length of
the longest increasing subsequence of a given array A[1 .. n] of numbers. We developed
two different recursive backtracking algorithms for this problem. Both algorithms run in
O(2n) time in the worst case; both algorithms can be sped up significantly via dynamic
programming.

8Greedy methods hardly ever work! So give three cheers, and one cheer more, for the prudent Captain
of the Pinafore! Then give three cheers, and one cheer more, for the Captain of the Pinafore!

11



3. DYNAMIC PROGRAMMING

Our first backtracking algorithm evaluated the function LISbigger(i, j), which we
defined as the length of the longest increasing subsequence of A[ j .. n] in which every
element is larger than A[i]. We derived the following recurrence for this function:

LISbigger(i, j) =











0 if j > n

LISbigger(i, j + 1) if A[i]≥ A[ j]
max{LISbigger(i, j + 1), 1+ LISbigger( j, j + 1)} otherwise

To solve the original problem, we can add a sentinel value A[0] = −∞ to the array and
compute LISbigger(0,1).

Each recursive subproblem is identified by two indices i and j, so there are only
O(n2) distinct recursive subproblems to consider. We can memoize the results of these
subproblems into a two-dimensional array LISbigger[0 ..n, 1 .. n].9 Moreover, each
subproblem can be solved in O(1) time, not counting recursive calls, so we should expect
the final dynamic programming algorithm to run in O(n2) time.

The order in which thememoized recursive algorithm fills this array is not immediately
clear; all we can tell from the recurrence is that each entry LISbigger[i, j] is filled in after
the entries LISbigger[i, j + 1] and LISbigger[ j, j + 1] in the next column, as indicated on
the left in Figure 3.3.

i

j

Figure 3.3. Dependencies between subproblems for longest increasing subsequence, and a valid evaluation order
Fortunately, this partial information is enough to give us a valid explicit evaluation

order. If we fill in our table one column at a time, from right to left, then whenever we
reach an entry in the table, the entries it depends on are already available. This may
not be the precise order that the recursive algorithm would use, but it works, so we’ll
go with it. The right figure in Figure 3.3 illustrates this evaluation order, with a double
arrow indicating the outer loop and single arrows indicating the inner loop. In this case,
the single arrows are bidirectional, because the order that we use to fill each column
doesn’t matter.

Putting everything together, we have the following dynamic programming algorithm:

9In fact, we only need half of this array, because we always have i < j. But even if we cared about
constant factors in this class (we don’t), this would be the wrong time to worry about them. The first
order of business is to find an algorithm that actually works; once we have that, then we can think about
optimizing it.
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LIS(A[1 .. n]):
A[0]←−∞ 〈〈Add a sentinel〉〉
for i← 0 to n 〈〈Base cases〉〉

LISbigger[i, n+ 1]← 0
for j← n downto 1

for i← 0 to j − 1 〈〈. . . or whatever〉〉
if A[i]≥ A[ j]

LISbigger[i, j]← LISbigger[i, j + 1]
else

LISbigger[i, j]←max{LISbigger[i, j + 1], 1+ LISbigger[ j, j + 1]}
return LISbigger[0, 1]

As expected, our algorithm runs in O(n2) time. If necessary, we can reduce the space
bound from O(n2) to O(n) by maintaining only the two most recent columns of the table,
LISbigger[·, j] and LISbigger[·, j + 1].10

Our second backtracking algorithm evaluated the function LISfirst(i), which we
defined as the length of the longest increasing subsequence of A[i .. n] that begins with
A[i]. We derived the following recurrence for this function:

LISfirst(i) = 1+max
�

LISfirst( j)
�

� j > i and A[ j]> A[i]
	

Here, we assume that max∅ = 0, so that the base case LISfirst(n) = 1 falls out of the
recurrence automatically. To solve the original problem, we can add a sentinel value
A[0] = −∞ to the array and compute LISfirst(0)− 1.

In this case, recursive subproblems are indicated by a single index i, so we can
memoize the recurrence into a one-dimensional array LISfirst[1 .. n]. Each entry LISfirst[i]
depends only on entries LISfirst[ j] with j > i, so we can fill the array in decreasing index
order. To compute each LISfirst[i], we need to consider LISfirst[ j] for all indices j > i,
but we don’t need to consider those indices j in any particular order. The final dynamic
programming algorithm runs in O(n2) time and uses O(n) space.

LIS2(A[1 .. n]):
A[0] = −∞ 〈〈Add a sentinel〉〉
for i← n downto 0

LISfirst[i]← 1
for j← i + 1 to n 〈〈. . . or whatever〉〉

if A[ j]> A[i] and 1+ LISfirst[ j]> LISfirst[i]
LISfirst[i]← 1+ LISfirst[ j]

return LISfirst[0]− 1 〈〈Don’t count the sentinel〉〉

10See, I told you not to worry about constant factors yet!
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3.7 Edit Distance

The edit distance between two strings is the minimum number of letter insertions, letter
deletions, and letter substitutions required to transform one string into another. For
example, the edit distance between FOOD and MONEY is at most four:

FOOD→ MOOD→ MON
∧
D→ MONED→ MONEY

This distance function was independently proposed by Vladimir Levenshtein in 1965
(working on coding theory), Taras Vintsyuk in 1968 (working on speech recognition),
and Stanislaw Ulam in 1972 (working with biological sequences). For this reason, edit
distance is sometimes called Levenshtein distance or Ulam distance (but strangely,
never Vintsyuk distance).

We can visualize this editing process by aligning the strings one above the other,
with a gap in the first word for each insertion and a gap in the second word for each
deletion. Columns with two different characters correspond to substitutions. In this
representation, the number of editing steps is just the number of columns that do not
contain the same character twice.

F O O D
M O N E Y

It’s fairly obvious that we can’t transform FOOD into MONEY in three steps, so the
edit distance between FOOD and MONEY is exactly four. Unfortunately, it’s not so easy in
general to tell when a sequence of edits is as short as possible. For example, the following
alignment shows that the distance between the strings ALGORITHM and ALTRUISTIC is at
most 6. Is that the best we can do?

A L G O R I T H M
A L T R U I S T I C

Recursive Structure

To develop a dynamic programming algorithm to compute edit distance, we first need
to develop a recurrence. Our alignment representation for edit sequences has a crucial
“optimal substructure” property. Suppose we have the gap representation for the shortest
edit sequence for two strings. If we remove the last column, the remaining columns
must represent the shortest edit sequence for the remaining prefixes. We can easily
prove this observation by contradiction: If the prefixes had a shorter edit sequence,
gluing the last column back on would gives us a shorter edit sequence for the original
strings. So once we figure out what should happen in the last column, the Recursion
Fairy can figure out the rest of the optimal gap representation.

Said differently, the alignment we are looking for represents a sequence of editing
operations, ordered (for no particular reason) from right to left. Solving the edit distance

14



3.7. Edit Distance

problem requires making a sequence of decisions, one for each column in the output
alignment. In the middle of this sequence of decisions, we have already aligned a suffix
of one string with a suffix of the other.

ALGOR
ALTRU

I T H M
I S T I C

Because the cost of an alignment is just the number of mismatched columns, our
remaining decisions don’t depend on the editing operations we’ve already chosen; the
only depend on the prefixes we haven’t aligned yet.

ALGOR
ALTRU

Thus, for any two input strings A[1 .. m] and B[1 .. n], we can formulate the edit distance
problem recursively as follows: For any indices i and j, let Edit(i, j) denote the edit
distance between the prefixes A[1 .. i] and B[1 .. j]. We need to compute Edit(m, n).

Recurrence

When i and j are both positive, there are exactly three possibilities for the last column in
the optimal alignment of A[1 .. i] and B[1 .. j]:
• Insertion: The last entry in the bottom row is empty. In this case, the edit distance is

equal to Edit(i − 1, j) + 1. The +1 is the cost of the final insertion, and the recursive
expression gives the minimum cost for the remaining alignment.

ALGO
ALTRU

R

• Deletion: The last entry in the top row is empty. In this case, the edit distance is
equal to Edit(i, j − 1) + 1. The +1 is the cost of the final deletion, and the recursive
expression gives the minimum cost for the remaining alignment.

ALGOR
ALTR U

• Substitution: Both rows have characters in the last column. If these two characters
are different, then the edit distance is equal to Edit(i − 1, j − 1) + 1. If these two
characters are equal, the substitution is free, so the edit distance is Edit(i − 1, j − 1).

ALGO
ALTR

R
U

ALGO
ALT

R
R

This generic case analysis breaks down if either i = 0 or j = 0, but those boundary cases
are easy to handle directly.
• Converting the empty string into a string of length j requires j insertions, so

Edit(0, j) = j.

15
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• Converting a string of length i into the empty string requires i deletions, so
Edit(i, 0) = i.

As a sanity check, both of these base cases correctly indicate that the edit distance
between the empty string and the empty string is zero!

We conclude that the Edit function satisfies the following recurrence:

Edit(i, j) =



























i if j = 0

j if i = 0

min











Edit(i − 1, j) + 1,

Edit(i, j − 1) + 1,

Edit(i − 1, j − 1) +
�

A[i] 6= B[ j]
�











otherwise

Dynamic Programming

Now that we have a recurrence, we can transform it into a dynamic programming
algorithm following the usual mechanical boilerplate.

• Subproblems: Each recursive subproblem is identified by two indices 0≤ i ≤ m and
0≤ j ≤ n.

• Memoization structure: So we can memoize all possible values of Edit(i, j) in a
two-dimensional array Edit[0 .. m, 0 .. n].

• Dependencies: Each entry Edit[i, j] depends only on its three neighboring entries
Edit[i − 1, j], Edit[i, j − 1], and Edit[i − 1, j − 1].

• Evaluation order: So if we fill in our table in the standard row-major order—row
by row from top down, each row from left to right—then whenever we reach an
entry in the table, the entries it depends on are already available. (This isn’t the only
evaluation order we could use, but it works, so let’s go with it.)

i

j

Figure 3.4. Dependencies in the memoization table for edit distance, and a valid evaluation order
• Space and time: The memoization structure uses O(mn) space. We can compute

each entry Edit[i, j] in O(1) time once we know its predecessors, so the overall
algorithm runs in O(mn) time.

Here is the resulting dynamic programming algorithm:
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EditDistance(A[1 .. m], B[1 .. n]):
for j← 0 to n

Edit[0, j]← j

for i← 1 to m
Edit[i, 0]← i
for j← 1 to n

if A[i] = B[ j]
Edit[i, j]←min

�

Edit[i − 1, j] + 1, Edit[i, j − 1] + 1, Edit[i − 1, j − 1]
	

else
Edit[i, j]←min

�

Edit[i − 1, j] + 1, Edit[i, j − 1] + 1, Edit[i − 1, j − 1] + 1
	

return Edit[m, n]

This algorithm is most commonly attributed to Robert Wagner and Michael Fischer,
who described the algorithm in 1974. However, in full compliance with Stigler’s Law of
Eponymy, either identical or more general algorithms were independently discovered by
Taras Vintsyuk in 1968, V. M. Velichko and N. G. Zagoruyko in 1970, David Sankoff in
1972, Peter Sellers11 in 1974, and almost certainly several others.12 Interestingly, none of
these papers cite either Levenshtein or Ulam.

The resulting array for ALGORITHM→ ALTRUISTIC is shown below in Figure 3.5. Bold
numbers indicate places where characters in the two strings are equal. The edit distance
between ALGORITHM and ALTRUISTIC is indeed six!

The arrows in this table indicate which predecessor(s) actually define each entry.
Each direction of arrow corresponds to a different edit operation: horizontal=deletion,
vertical=insertion, and diagonal=substitution. Bold red diagonal arrows indicate “free”
substitutions of a letter for itself. Any path of arrows from the top left corner to the
bottom right corner of this table represents an optimal edit sequence between the two
strings. (There can be many such paths.) The edit distance algorithm does not actually
compute or store these arrows, but the arrow(s) leading into any entry in the table can be
reconstructed on the fly in O(1) time from the numerical values. Thus, once we’ve filled
in the table, we can reconstruct the actual optimal edit sequence in O(n+m) additional
time.

Finally, the memoization table contains exactly three directed paths from the top
left corner to the bottom right corner, each indicating a different sequence of six edits
transforming ALGORITHM into ALTRUISTIC. These edit sequences are shown in Figure 3.6.

11“Gentlemen! You can’t fight in here! This is the War Room!” Okay, no, it wasn’t that Peter Sellers.
12This algorithm is sometimes also incorrectly attributed to Saul Needleman and Christian Wunsch in

1970. “The Needleman-Wunsch algorithm” more commonly refers to the standard dynamic programming
algorithm for computing the longest common subsequence of two strings (or equivalently, the edit distance
where only insertions and deletions are permitted) in O(mn) time, but that attribution is also incorrect! In
fact, Needleman and Wunsch’s algorithm computes (weighted) longest common subsequences (possibly
with gap costs) in O(m2n2) time, using a different recurrence. Sankoff explicitly describes his O(mn)-time
algorithm as an improvement of Needleman and Wunsch’s algorithm.
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A L G O R I T H M
0→1→2→3→4→5→6→7→8→9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4→4→5→6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

Figure 3.5. The memoization array for Edit(ALGORITHM,ALTRUISTIC)

A L G O R I T H M
A L T R U I S T I C

A L G O R I T H M
A L T R U I S T I C

A L G O R I T H M
A L T R U I S T I C

Figure 3.6. Three optimal transformations from ALGORITHM into ALTRUISTIC.

3.8 Subset Sum

Recall that the Subset Sum problem asks, given an array X [1 .. n] of positive integers and
an integer T , whether any subset of X sums to T . In the previous chapter, we developed
a recursive algorithm which can be reformulated as follows. Fix the original input array
X [1 .. n] and the original target sum T , and define the boolean function

SS(i, t) = True if and only if some subset of X [i .. n] sums to t.

This function satisfies the following recurrence:

SS(i, t) =











True if t = 0

False if t < 0 or i > n

SS(i + 1, t) ∨ SS(i + 1, t − X [i]) otherwise
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We can transform this recurrence into a dynamic programming algorithm following the
usual mechanical boilerplate.
• Subproblems: Each subproblem is described by an integer i such that 1≤ i ≤ n+ 1,

and an integer t ≤ T . However, subproblems with t < 0 are trivial, so it seems
rather silly to memoize them.13 Indeed, we can modify the recurrence so that those
subproblems never arise:

SS(i, t) =



















True if t = 0

False if i > n

SS(i + 1, t) if t > X [i]
SS(i + 1, t) ∨ SS(i + 1, t − X [i]) otherwise

• Data structure: We can memoize all results into a two-dimensional array S[1 .. n+ 1,
0 .. T], where S[i, t] stores the value of SS(i, t).

• Evaluation order: Each entry S[i, t] depends on at most two other entries, both of
the form SS[i + 1, ·]. So we can fill the array by considering rows from bottom to
top in the outer loop, and considering the elements in each row in arbitrary order in
the inner loop.

• Space and time: The memoization structure uses O(nT) space. If S[i + 1, t) and
S[i+ 1, t − X [i]] are already known, we can compute S[i, t] in constant time, so the
algorithm runs in O(nT) time.

Here is the resulting dynamic programming algorithm:

SubsetSum(X [1 .. n], T ):
S[n+ 1,0]← True
for t ← 1 to T

S[n+ 1, t]← False

for i← n downto 1
S[i, 0] = True
for t ← 1 to X [i]− 1

S[i, t]← S[i + 1, t] 〈〈Avoid the case t < 0〉〉
for t ← X [i] to T

S[i, t]← S[i + 1, t]∨ S[i + 1, t − X [i]]

return S[1, T]

The running time O(nT ) for this algorithm is a significant improvement over the
O(2n)-time recursive backtracking algorithm when T is small.14 However, if the target
sum T is significantly larger than 2n, this dynamic programming algorithm is actually

13Yes, I’m breaking my own rule against premature optimization.
14Even though SubsetSum is NP-complete, this time bound does not imply that P=NP, because T is not

necessary bounded by a polynomial function of the input size.
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slower than the naïve recursive algorithm, because it’s wasting time solving subproblems
that the recursive algorithm never considers. Dynamic programming isn’t always an
improvement!

3.9 Common Patterns

All of the examples we’ve seen so far fall into a category I like to call sequence dynamic
programming, because we are given one or more sequences (arrays) as input, and we are
trying to compute an optimal sequence as output: a sequence of word boundaries, an
increasing sequence of values, a sequence of editing operations, or a sequence of yes-no
decisions. In every case, the input to the recursive subproblems consists of prefixes or
suffixes of the input sequence, possibly with some additional information.

ÆÆÆ • Prefixes or suffixes — O(n) — Word segmentation• Two prefixes or suffixes — O(n2) — Edit distance• Prefix/suffix with one past index — O(n2) — Longest increasing subsequence• Prefix/suffix plus counter — O(n2) — Subset sum, segment into k words• Two prefixes plus counter — O(n3) — Edit distance with at most k replacements• Two prefixes plus index — O(n3) — Longest common increasing subsequence• Substrings (work from both ends) — O(n2) — Longest palindrome subsequence

3.10 Optimal Binary Search Trees

In the previous chapter, we also developed a recursive algorithm for the optimal binary
search tree problem. We are given a sorted array A[1 .. n] of search keys and an array
f [1 .. n] of frequency counts, where f [i] is the number of times we will search for A[i].
Our task is to construct a binary search tree for that set such that the total cost of all the
searches is as small as possible.

Fix the frequency array f , and let OptCost(i, k) denote the total search time in the
optimal search tree for the subarray A[i .. k]. We derived the following recurrence for
the function OptCost:

OptCost(i, k) =















0 if i > k

k
∑

j=i

f [i] + min
i≤r≤k

�

OptCost(i, r − 1) + OptCost(r + 1, k)
	

otherwise

Let’s follow our standard outline for transforming this recurrence into a dynamic
programming algorithm.

Our algorithm will be somewhat simpler (and in practice, faster) if we can get that
summation out of the recurrence. For any pair of indices i ≤ k, let F(i, k) denote the
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total frequency count for all the keys in the interval A[i .. k]:

F(i, k) :=
k
∑

j=i

f [ j]

This function satisfies the following simple recurrence:

F(i, k) =

¨

f [i] if i = k

F(i, k− 1) + f [k] otherwise

We can compute all possible values of F(i, k) in O(n2) time using—you guessed it!—
dynamic programming!

InitF( f [1 .. n]):
for i← 1 to n

F[i, i − 1]← 0
for k← i to n

F[i, k]← F[i, k− 1] + f [k]

Our final algorithm will use InitF as an initialization subroutine.
We can now simplify the original recurrence as follows:

OptCost(i, k) =







0 if i > k

F(i, k) + min
i≤r≤k

�

OptCost(i, r − 1) + OptCost(r + 1, k)
	

otherwise

We can derive a dynamic programming algorithm for this recurrence using our standard
strategy.
• Subproblems: Each recursive subproblem is specified by two integers: 1≤ i ≤ n+1

and 0≤ k ≤ n.
• Memoization: We can store all possible values of OptCost in a two-dimensional array

OptCost[1 .. n+ 1, 0 .. n]. (Only the entries OptCost[i, j] with j ≥ i − 1 will actually
be used, but whatever.)

• Dependencies: Each entry OptCost[i, k] depends on the entries OptCost[i, j − 1]
and OptCost[ j + 1, k] for all j such that i ≤ j ≤ k. In other words, every entry in the
table depends on all the entries either directly to the left or directly below.

The following subroutine fills the entry OptCost[i, k], assuming all the entries it
depends on have already been computed.

ComputeOptCost(i, k):
OptCost[i, k]←∞
for r ← i to k

tmp← OptCost[i, r − 1] +OptCost[r + 1, k]
if OptCost[i, k]> tmp

OptCost[i, k]← tmp
OptCost[i, k]← OptCost[i, k] + F[i, k]
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i

k

Figure 3.7. Subproblem dependencies in the optimal binary search tree problem.

• Evaluation order: There are at least three different orders that can be used to fill
the array. The first one that occurs to most students is to scan through the table one
diagonal at a time, starting with the trivial base cases OptCost[i, i − 1] and working
toward the final answer OptCost[1, n], like so:

OptimalBST( f [1 .. n]):
InitF( f [1 .. n])
for i← 1 to n+ 1

OptCost[i, i − 1]← 0
for d ← 0 to n− 1

for i← 1 to n− d 〈〈. . . or whatever〉〉
ComputeOptCost(i, i + d)

return OptCost[1, n]

We could also traverse the array row by row from the bottom up, traversing each row
from left to right, or column by column from left to right, traversing each columns
from the bottom up.

OptimalBST2( f [1 .. n]):
InitF( f [1 .. n])
for i← n+ 1 downto 1

OptCost[i, i − 1]← 0
for j← i to n

ComputeOptCost(i, j)
return OptCost[1, n]

OptimalBST3( f [1 .. n]):
InitF( f [1 .. n])
for j← 0 to n+ 1

OptCost[ j + 1, j]← 0
for i← j downto 1

ComputeOptCost(i, j)
return OptCost[1, n]

Again, we can illustrate these evaluation orders using a double-lined arrow to indicate
the outer loop and single-lined arrows to indicate the inner loop. The bidirectional
arrows in the first evaluation order indicate that the order of the inner loops doesn’t
matter.

Figure 3.8. Three different evaluation orders for the optimal binary search tree problem.
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• Time and space: No matter which of these orders we actually use, the resulting
algorithm runs in O(n3) time and uses O(n2) space.

In fact, we could have predicted these space and time bounds directly from the
original recurrence:

OptCost(i, k) =







0 if i > k

F(i, k) + min
i≤r≤k

�

OptCost(i, r − 1) +OptCost(r + 1, k)
	

otherwise

The OptConst function has two arguments, each of which can take on roughly n
different values, so we probably need a data structure of size O(n2). On the other
hand, there are three variables in the body of the recurrence (i, k, and r), each of
which can take roughly n different values, so it should take O(n3) time to compute
everything.

3.11 Dynamic Programming on Trees

So far, all of our dynamic programming example use a multidimensional array to store
the results of recursive subproblems. However, as the next example shows, this is not
always the most appropriate date structure to use.

An independent set in a graph is a subset of the vertices with no edges between
them. Finding the largest independent set in an arbitrary graph is extremely hard; in
fact, this is one of the canonical NP-hard problems we will study in a later chapter. But
for some special cases of graphs, we can find the largest independent set efficiently. In
particular, when the input graph is a tree with n vertices, we can compute the largest
independent set in O(n) time.

So suppose we are given a tree T . Without loss of generality, suppose T is a rooted
tree; that is, there is a special node in T called the root, and all edges are implicitly
directed away from this vertex. (If T is an unrooted tree—a connected acyclic undirected
graph—we can choose an arbitrary vertex as the root.) We call vertex w a descendant of
vertex v if the unique path from w to the root includes v; equivalently, the descendants
of v are v itself and the descendants of the children of v. The subtree rooted at v consists
of all the descendants of v and the edges between them.

For any node v in T , let MIS(v) denote the size of the largest independent set in the
subtree rooted at v. Any independent set in this subtree that excludes v itself is the
union of independent sets in the subtrees rooted at the children of v. On the other hand,
any independent set that includes v necessarily excludes all of v’s children, and therefore
includes independent sets in the subtrees rooted at v’s grandchildren. Thus, the function
MIS obeys the following recurrence, where the nonstandard notation w ↓ v means “w is
a child of v”:

MIS(v) =max

(

∑

w↓v

MIS(v), 1+
∑

w↓v

∑

x↓w

MIS(x)

)
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We need to compute MIS(r), where r is the root of T .
What data structure should we use to memoize this recurrence? The most natural

choice is the tree T itself! Specifically, for each vertex v in T , we store the result of
MIS(v) in a new field v.MIS. (In principle, we could use an array instead, but then we’d
have to pointers back and forth between each node and its corresponding array entry, so
why bother?)

What’s a good order to consider the subproblems? The subproblem associated with
any node v depends on the subproblems associated with the children and grandchildren
of v. So we can visit the nodes in any order, provided that every vertex is visited before
its parent; in particular, we can use a standard post-order traversal.

What’s the running time of the algorithm? The non-recursive time associated with
each node v is proportional to the number of children and grandchildren of v; this number
can be very different from one vertex to the next. But we can turn the analysis around:
Each vertex contributes a constant amount of time to its parent and its grandparent!
Because each vertex has at most one parent and at most one grandparent, the algorithm
runs in O(n) time.

Here is the resulting dynamic programming algorithm. Yes, it’s still recursive, because
that’s the most natural way to implement a post-order tree traversal.

MIS(v):
withoutv← 0
for each child w of v

withoutv← withoutv+MIS(w)
withv← 1
for each grandchild x of v

withv← withv+ x .MIS
v.MIS←max{withv, withoutv}
return v.MIS

We can derive an even simpler linear-time algorithm by defining two separate
functions over the nodes of T :
• Let MISyes(v) denote the size of the largest independent set of the subtree rooted

at v that includes v.

• Let MISno(v) denote the size of the largest independent set of the subtree rooted
at v that excludes v.

Again, we need to compute max{MISyes(r),MISno(r)}, where r is the root of T . The
first two functions satisfy the following mutual recurrence:

MISyes(v) = 1+
∑

w↓v

MISno(w)

MISno(v) =
∑

w↓v

max {MISyes(w),MISno(w)}
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Again, we can memoize these functions into the tree itself, by defining two new fields
for each vertex. A straightforward post-order traversal evaluates both functions at every
node in O(n) time. The following function not only memoizes the separate function
values at v, it also returns the larger of the two functions.

MIS(v):
v.MISno← 0
v.MISyes← 1
for each child w of v

v.MISno← v.MISno+MIS(w)
v.MISyes← v.MISyes+w.MISno

return max{v.MISyes, v.MISno}

Exercises

Sequences/Arrays

1. In a previous life, you worked as a cashier in the lost Antarctican colony of Nadira,
spending the better part of your day giving change to your customers. Because paper
is a very rare and valuable resource in Antarctica, cashiers were required by law to
use the fewest bills possible whenever they gave change. Thanks to the numerological
predilections of one of its founders, the currency of Nadira, called Dream Dollars,
was available in the following denominations: $1, $4, $7, $13, $28, $52, $91, $365.15

«(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed Homework
the target amount. For example, to make $122 using the greedy algorithm, we
first take a $91 bill, then a $28 bill, and finally three $1 bills. Give an example
where this greedy algorithm uses more Dream Dollar bills than the minimum
possible. [Hint: It may be easier to write a small program than to work this out
by hand.]

(b) Describe and analyze a recursive algorithm that computes, given an integer k, Exam
the minimum number of bills needed to make k Dream Dollars. (Don’t worry
about making your algorithm fast; just make sure it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an integer k, Exam
the minimum number of bills needed to make k Dream Dollars. (This one needs
to be fast.)

2. Suppose you are given an array A[1 .. n] of numbers, which may be positive, negative,
or zero, and which are not necessarily integers.

(a) Describe and analyze an algorithm that finds the largest sum of of elements in a Exam, Wikipedia
contiguous subarray A[i .. j].

15For more details on the history and culture of Nadira, including images of the various denominations
of Dream Dollars, see http://moneyart.biz/dd/.
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(b) Describe and analyze an algorithm that finds the largest product of of elementsExam
in a contiguous subarray A[i .. j].

For example, given the array [−6,12,−7,0, 14,−7,5] as input, your first algorithm
should return 19, and your second algorithm should return 504.

sum=19
︷ ︸︸ ︷

−6 12 −7 0 14 −7 5
︸ ︷︷ ︸

product=504

For the sake of analysis, assume that comparing, adding, or multiplying any pair of
numbers takes O(1) time.

[Hint: Problem (a) has been a standard computer science interview question
since at least the mid-1980s. You can find many correct solutions on the web;
the problem even has its own Wikipedia page! But at least in 2016, a significant
fraction of the solutions I found on the web for problem (b) were either slower than
necessary or actually incorrect. Remember that the product of two negative numbers
is positive.]

3. This series of exercises asks you to develop efficient algorithms to find optimal
subsequences of various kinds. A subsequence is anything obtained from a sequence
by extracting a subset of elements, but keeping them in the same order; the elements
of the subsequence need not be contiguous in the original sequence. For example,
the strings C, DAMN, YAIOAI, and DYNAMICPROGRAMMING are all subsequences of the
string DYNAMICPROGRAMMING.

[Hint: Exactly one of these problems can be solved in O(n) time using a greedy
algorithm.]

(a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of AExam
and B is another sequence that is a subsequence of both A and B. Describe an
efficient algorithm to compute the length of the longest common subsequence of
A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequenceExam
of A and B is another sequence that contains both A and B as subsequences.
Describe an efficient algorithm to compute the length of the shortest common
supersequence of A and B.

(c) Call a sequence X [1 .. n] of numbers bitonic if there is an index i with 1< i < n,Exam
such that the prefix X [1 .. i] is increasing and the suffix X [i .. n] is decreasing.
Describe an efficient algorithm to compute the length of the longest bitonic
subsequence of an arbitrary array A of integers.

(d) Call a sequence X [1 .. n] of numbers oscillating if X [i]< X [i + 1] for all even i,Exam
and X [i]> X [i + 1] for all odd i. Describe an efficient algorithm to compute the
length of the longest oscillating subsequence of an arbitrary array A of integers.
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(e) Describe an efficient algorithm to compute the length of the shortest oscillating Exam
supersequence of an arbitrary array A of integers.

(f) Call a sequence X [1 .. n] of numbers convex if 2 · X [i]< X [i − 1] + X [i + 1] for Exam
all i. Describe an efficient algorithm to compute the length of the longest convex
subsequence of an arbitrary array A of integers.

(g) Call a sequence X [1 .. n] of numbers weakly increasing if each element is larger Exam
than the average of the two previous elements; that is, 2·X [i]> X [i−1]+X [i−2]
for all i > 2. Describe an efficient algorithm to compute the length of the longest
weakly increasing subsequence of an arbitrary array A of integers.

(h) Call a sequence X [1 .. n] of numbers double-increasing if X [i]> X [i − 2] for all Exam
i > 2. (In other words, a double-increasing sequence is a perfect shuffle of two
increasing sequences.) Describe an efficient algorithm to compute the length of
the longest double-increasing subsequence of an arbitrary array A of integers.

(i) Recall that a sequence X [1 .. n] of numbers is increasing if X [i] < X [i + 1] Homework
for all i. Describe an efficient algorithm to compute the length of the longest
common increasing subsequence of two given arrays of integers. For example,
〈1,4, 5,6, 7,9〉 is the longest common increasing subsequence of the sequences
〈3,1, 4,1, 5,9, 2,6, 5,3, 5,8, 9,7, 9,3〉 and 〈1,4, 1,4, 2,1, 3,5, 6,2, 3,7, 3,0, 9,5〉.

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new Exam
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuf-
fles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

(a) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+ n], describe and analyze an
algorithm to determine whether C is a shuffle of A and B.

(b) A smooth shuffle of X and Y is a shuffle of X and Y that never uses more than
two consecutive symbols of either string. For example,

• PRDOYGNARAMMMIICNG is a smooth shuffle of DYNAMIC and PROGRAMMING.
• DYPRNOGRAAMMMICING is a shuffle of DYNAMIC and PROGRAMMING, but it is not

a smooth shuffle (because of the substrings OGR and ING).
• XXXXXXXXXXXXXXXXXXX is a smooth shuffle of XXXXXXX and XXXXXXXXXXX.
• There is no smooth shuffle of XXXX and XXXXXXXXXXXX.

Describe and analyze an algorithm to decide, given three strings X , Y , and Z ,
whether Z is a smooth shuffle of X and Y .
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5. For each of the following problems, the input consists of two arrays X [1 .. k] and
Y [1 .. n] where k ≤ n.

(a) Describe and analyze an algorithm to determine whether X is a subsequence of Y .Exam
For example, the string PPAP is a subsequence of the string PENPINEAPPLEAPPLEPEN.

(b) Describe and analyze an algorithm to find the smallest number of symbols thatExam
can be removed from Y so that X is no longer a subsequence. Equivalently, your
algorithm should find the longest subsequence of Y that is not a supersequence
of X . For example, after removing removing two symbols from the string
PENPINEAPPLEAPPLEPEN, the string PPAP is no longer a subsequence.

ª(c) Describe and analyze an algorithm to determine whether X occurs as twoFun Homework
disjoint subsequences of Y . For example, the string PPAP appears as two disjoint
subsequences in the string PENPINEAPPLEAPPLEPEN.

(d) Suppose the input also includes a third array C[1 .. n] of numbers, which may beHomework
positive, negative, or zero, where C[i] is the cost of Y [i]. Describe and analyze
an algorithm to compute the minimum-cost occurrence of X as a subsequence
of Y . That is, we want to find an array I[1 .. k] such that I[ j] < I[ j + 1] and
X [I[ j]] = Y [ j] for every index j, and the total cost

∑k
j=1 C[ j] is as small as

possible.

(e) Describe and analyze an algorithm to compute the total number of (possibly over-Homework
lapping) occurrences of X as a subsequence of Y . For purposes of analysis, assume
that we can add two arbitrary integers in O(1) time. For example, the string PPAP
appears exactly 23 times as a subsequence of the string PENPINEAPPLEAPPLEPEN.
If all characters in X and Y are equal, your algorithm should return

�n
k

�

.

(f) What is the running time of your algorithm for part (d) if adding two `-bitHomework
integers requires O(`) time?

6. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or
RACECAR, or AMANAPLANACATACANALPANAMA.

(a) Describe and analyze an algorithm to find the length of the longest subsequence ofExam
a given string that is also a palindrome. For example, the longest palindrome sub-
sequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM, so given
that string as input, your algorithm should return the number 11.

(b) Describe and analyze an algorithm to find the length of the shortest supersequenceExam
of a given string that is also a palindrome. For example, the shortest palindrome
supersequence of TWENTYONE is TWENTOYOTNEWT, so given the string TWENTYONE
as input, your algorithm should return the integer 13.

(c) Any string can be decomposed into a sequence of palindromes. For example,Exam
the string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into
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palindromes in the following ways (and 65 others):

BUB • BASEESAB • ANANA
B • U • BB • ASEESA • B • ANANA
BUB • B • A • SEES • ABA • N • ANA

B • U • BB • A • S • EE • S • A • B • A • NAN • A
B • U • B • B • A • S • E • E • S • A • B • A • N • A • N • A

Describe and analyze an efficient algorithm to find the smallest number of
palindromes that make up a given input string. For example, given the input
string BUBBASEESABANANA, your algorithm should return the integer 3.

(d) Describe and analyze an efficient algorithm to find the largest integer k such that Homework
a given string can be split into palindromes of length at least k. For example
• Given the string PALINDROME, your algorithm should return 1.
• Given the string BUBBASEESABANANA, your algorithm should return 3, for the

split BUB • BASEESAB • ANANA.
• Given a string of n identical symbols, your algorithm should return n.

(e) Describe and analyze an efficient algorithm to find the number of different ways Homework
that a given string can be decomposed into palindromes. For example:
• Given the string PALINDROME, your algorithm should return 1.
• Given the string BUBBASEESABANANA, your algorithm should return 70.
• Given a string of n identical symbols, your algorithm should return 2n−1.

(f) Ametapalindrome is a decomposition of a string into a sequence of palindromes, Homework
such that the sequence of palindrome lengths is itself a palindrome. For example:

BUB • B • L • E • S • SEES • A • B • A • N • ANA

is metapalindrome for the string BUBBLESSEESABANANA, whose length sequence
is the palindrome (3,1, 1,1, 1,4, 1,1, 1,1, 3). Describe and analyze an efficient
algorithm to find the length of the shortest metapalindrome for a given string. For
example, given the string BUBBLESSEESABANANA, your algorithm should return 11.

7. Describe and analyze an efficient algorithm to find the length of the longest contiguous Exam
substring that appears both forward and backward in an input string T[1 .. n]. The
forward and backward substrings must not overlap. Here are several examples:

• Given the input string ALGORITHM, your algorithm should return 0.
• Given the input string RECURSION, your algorithm should return 1, for the

substring R.
• Given the input string REDIVIDE, your algorithm should return 3, for the substring

EDI. (The forward and backward substrings must not overlap!)
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• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should
return 4, for the substring YNAM. (In particular, it should not return 6, for the
subsequence YNAMIR).

8. Suppose you are given an array A[1 .. n] of positive integers, each of which is coloredHomework
either red or blue. An increasing back-and-forth subsequence is an sequence of indices
I[1 ..`] with the following properties:
• 1≤ I[ j]≤ n for all j.
• A[I[ j]]< A[I[ j + 1]] for all j < `.
• If A[I[ j]] is red, then I[ j + 1]> I[ j].
• If A[I[ j]] is blue, then I[ j + 1]< I[ j].
Less formally, suppose we start with a token on some integer A[ j], and then repeatedly
move the token Left (if it’s on a bLue square) or Right (if it’s on a Red square), always
moving from a smaller number to a larger number. Then the sequence of token
positions is an increasing back-and-forth subsequence.

Describe an algorithm to compute the length of the longest increasing back-and-
forth subsequence of a given array of n red and blue integers. For example, given the
input array

1 1 0 2 5 9 6 6 4 5 8 9 7 7 3 2 3 8 4 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

your algorithm should return the integer 9, which is the length of the following
increasing back-and-forth subsequence:

0 1 2 3 4 6 7 8 9
20 1 16 17 9 8 13 11 12

9. Suppose we want to display a paragraph of text on a computer screen. The textHomework, google
consists of a sequence of n words, where the ith word has length `[i]. We want
to break the paragraph into several lines of total length exactly L. For example,
according to TEX, the program used to typeset these notes, the paragraph you are
reading right now is approximately 13.31844 cm ≈ 5.24525 inches wide.

Depending on how the paragraph is broken into lines of text, we must insert
different amounts of white space between the words. The paragraph should be fully
justified, meaning that the first character on each line starts at the left margin, and
except for the last line, the last character on each line ends at the right margin. There
must be at least one unit of white space between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of
the cube of the amount of extra white-space in each line, not counting the one unit
of required space between each adjacent pair of words. Specifically, if a line contains
words i through j, then the slop of that line is defined to be

�

L − j + i −
∑ j

k=i `[k]
�3.

Describe a dynamic programming algorithm to print the paragraph with minimum
slop.
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10. You and your eight-year-old nephew Elmo decide to play a simple card game. At the Exam: (a)(b)(c) or(a)(b)(d)beginning of the game, the cards are dealt face up in a long row. Each card is worth
a different number of points. After all the cards are dealt, you and Elmo take turns
removing either the leftmost or rightmost card from the row, until all the cards are
gone. At each turn, you can decide which of the two cards to take. The winner of
the game is the player that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task
is to find a strategy that will beat Elmo whenever possible. (It might seem mean to
beat up on a little kid like this, but Elmo absolutely hates it when grown-ups let him
win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy
as Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of
cards, the maximum number of points that you can collect playing against Elmo.

¨(c) When Elmo was four, he used an even simpler strategy—on his turn, he always Assumes familiaritywith probabilitychose his next card uniformly at random. That is, if there was more than one
card left on his turn, he would take the leftmost card with probability 1/2, and
the rightmost card with probability 1/2. Describe an algorithm to determine,
given the initial sequence of cards, the maximum expected number of points you
can collect playing against four-year-old-Elmo.

(d) Five years later, thirteen-year-old Elmo has become a much stronger player.
Describe and analyze an algorithm to determine, given the initial sequence of
cards, the maximum number of points that you can collect playing against a
perfect opponent.

11. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big Exam
dance contest you’ve been training for your entire life, except for that summer you
spent with your uncle in Alaska hunting wolverines. You’ve obtained an advance copy
of the list of n songs that the judges will play during the contest, in chronological
order.

You know all the songs, all the judges, and your own dancing ability extremely
well. For each integer k, you know that if you dance to the kth song on the schedule,
you will be awarded exactly Score[k] points, but then you will be physically unable
to dance for the nextWait[k] songs (that is, you cannot dance to songs k+1 through
k+Wait[k]). The dancer with the highest total score at the end of the night wins
the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score
you can achieve. The input to your sweet algorithm is the pair of arrays Score[1 .. n]
and Wait[1 .. n].
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12. The new swap-puzzle game Candy Swap Saga XIII involves n cute animals numberedExam
1 through n. Each animal holds one of three types of candy: circus peanuts, Heath
bars, and Cioccolateria Gardini chocolate truffles. You also have a candy in your
hand; at the start of the game, you have a circus peanut.

To earn points, you visit each of the animals in order from 1 to n. For each
animal, you can either keep the candy in your hand or exchange it with the candy
the animal is holding.

• If you swap your candy for another candy of the same type, you earn one point.
• If you swap your candy for a candy of a different type, you lose one point. (Yes,

your score can be negative.)
• If you visit an animal and decide not to swap candy, your score does not change.

You must visit the animals in order, and once you visit an animal, you can never visit
it again.

Describe and analyze an efficient algorithm to compute your maximum possible
score. Your input is an array C[1 .. n], where C[i] is the type of candy that the ith
animal is holding.

13. Lenny Rutenbar, the founding dean of the new Maximilian Q. Levchin College of
Computer Science, has commissioned a series of snow ramps on the south slope of the
Orchard Downs sledding hill16 and challenged Bill Kudeki, head of the Department
of Electrical and Computer Engineering, to a sledding contest. Bill and Lenny will
both sled down the hill, each trying to maximize their air time. The winner gets to
expand their department/college into both Siebel Center and the new ECE Building;
the loser has to move their entire department/college under the Boneyard bridge
next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use
that ramp to jump through the air, possibly flying over one or more ramps, or sled
past that ramp and stay on the ground. Obviously, if someone flies over a ramp, they
cannot use that ramp to extend their jump.

(a) Suppose you are given a pair of arrays Ramp[1 .. n] and Length[1 .. n], whereExam
Ramp[i] is the distance from the top of the hill to the ith ramp, and Length[i]
is the distance that any sledder who takes the ith ramp will travel through the
air. Describe and analyze an algorithm to determine the maximum total distance
that Lenny or Bill can spend in the air.

(b) Uh-oh. The university lawyers heard about Lenny and Bill’s little bet andHomework
immediately objected. To protect the university from either lawsuits or sky-
rocketing insurance rates, they impose an upper bound on the number of jumps
that either sledder can take. Describe and analyze an algorithm to determine the

16The north slope is faster, but too short for an interesting contest.
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maximum total distance that Lenny or Bill can spend in the air with at most k
jumps, given the original arrays Ramp[1 .. n] and Length[1 .. n] and the integer k
as input.

ª(c) When the lawyers realized that imposing their restriction didn’t immediately Fun Homework
shut down the contest, they added a new restriction: No ramp can be used more
than once! Disgusted by the legal interference, Lenny and Bill give up on their
bet and decide to cooperate to put on a good show for the spectators. Describe
and analyze an algorithm to determine the maximum total distance that Lenny
and Bill can spend in the air, each taking at most k jumps (so at most 2k jumps
total), and with each ramp used at most once.

14. Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox. The Exam
course consists of a long row of booths, each with a number painted on the front
with bright red paint. Formally, Mr. Fox is given an array A[1 .. n], where A[i] is the
number painted on the front of the ith booth. Each number A[i] could be positive,
negative, or zero. Everyone agrees with the following rules:
• At each booth, Mr. Fox must say either “Ring!” or “Ding!”.
• If Mr. Fox says “Ring!” at the ith booth, he earns a reward of A[i] chickens. (If

A[i]< 0, Mr. Fox pays a penalty of −A[i] chickens.)
• If Mr. Fox says “Ding!” at the ith booth, he pays a penalty of A[i] chickens. (If

A[i]< 0, Mr. Fox earns a reward of −A[i] chickens.)
• Mr. Fox is forbidden to say the same word more than three times in a row. For

example, if he says “Ring!” at booths 6, 7, and 8, then he must say “Ding!” at
booth 9.

• All accounts will be settled at the end; Mr. Fox does not actually have to carry
chickens through the obstacle course.

• If Mr. Fox violates any of the rules, or if he ends the obstacle course owing the
farmers chickens, the farmers will shoot him.

Describe and analyze an algorithm to compute, the largest number of chickens that
Mr. Fox can earn by running the obstacle course, given the array A[1 .. n] of numbers
as input.

15. Dance Dance Revolution is a dance video game, first introduced in Japan by Konami Exam
in 1998. Players stand on a platform marked with four arrows, pointing forward,
back, left, and right, arranged in a cross pattern. During play, the game plays a song
and scrolls a sequence of n arrows (

Ü

, Ü,

Ü

, or Ü) from the bottom to the top of the
screen. At the precise moment each arrow reaches the top of the screen, the player
must step on the corresponding arrow on the dance platform. (The arrows are timed
so that you’ll step with the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where
the goal is to play perfectly but move as little as possible. When an arrow reaches
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the top of the screen, if one of your feet is already on the correct arrow, you are
awarded one style point for maintaining your current pose. If neither foot is on the
right arrow, you must move one (and only one) of your feet from its current location
to the correct arrow on the platform. If you ever step on the wrong arrow, or fail to
step on the correct arrow, or move more than one foot at a time, or move either foot
when you are already standing on the correct arrow, all your style points are taken
away and you lose the game.

How should you move your feet to maximize your total number of style points?
For purposes of this problem, assume you always start with your left foot on

Ü

and
your right foot on Ü, and that you’ve memorized the entire sequence of arrows. For
example, if the sequence is Ü Ü

Ü Ü Ü

Ü

Ü

Ü, you can earn 5 style points by moving
your feet as shown below:

➜

➜

➜

➜

➜

➜

➜ ➜

➜

➜ ➜

➜➜
➜

➜➜

➜➜

➜ ➜

➜

➜

➜➜

➜ ➜

➜

➜

L R R R R R R L R L

➜L ➜L
➜L ➜L

➜L ➜L ➜R➜RL R R R R R L R L
L L

L L
L L RR

Style point! Style point! Style point! Style point!Style point!

➜ ➜

➜ ➜ ➜ ➜

➜

R

➜

Begin!

(a) Prove that for any sequence of n arrows, it is possible to earn at least n/4− 1
style points.

(b) Describe an efficient algorithm to find the maximum number of style points you
can earn during a given VVR routine. The input to your algorithm is an array
Arrow[1 .. n] containing the sequence of arrows.

16. Consider the following solitaire form of Scrabble. We begin with a fixed, finiteHomework: (a)(b)Exam: (a) sequence of tiles; each tile contains a letter and a numerical value. At the start of
the game, we draw the seven tiles from the sequence and put them into our hand.
In each turn, we form an English word from some or all of the tiles in our hand,
place those tiles on the table, and receive the total value of those tiles as points. If
no English word can be formed from the tiles in our hand, the game immediately
ends. Then we repeatedly draw the next tile from the start of the sequence until
either (a) we have seven tiles in our hand, or (b) the sequence is empty. (Sorry, no
double/triple word/letter scores, bingos, blanks, or passing.) Our goal is to obtain as
many points as possible.

For example, suppose we are given the following sequence of 20 tiles:

I2 N2 X8 A1 N2 A1 D3 U5 D3 I2 D3 K8 U5 B4 L2 A1 K8 H5 A1 N2

Then we can earn 68 points as follows:

• We initially draw I2 N2 X8 A1 N2 A1 D3 .

• Play the word N2 A1 I2 A1 D3 for 9 points, leaving N2 X8 in our hand.

• Draw the next five tiles U5 D3 I2 D3 K8 .
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• Play the word U5 N2 D3 I2 D3 for 15 points, leaving K8 X8 in our hand.

• Draw the next five tiles U5 B4 L2 A1 K8 .

• Play the word B4 U5 L2 K8 for 19 points, leaving K8 X8 A1 in our hand.

• Draw the next three tiles H5 A1 N2 , emptying the list.

• Play the word A1 N2 K8 H5 for 16 points, leaving X8 A1 in our hand.

• Play the word A1 X8 for 9 points, emptying our hand and ending the game.

(a) Suppose you are given as input two arrays Letter[1 .. n], containing a sequence of
letters between A and Z, and Value[A ..Z], where Value[`] is the value of letter `.
Design and analyze an efficient algorithm to compute the maximum number of
points that can be earned from the given sequence of tiles.

(b) Now suppose two tiles with the same letter can have different values; you are
given two arrays Letter[1 .. n] and Value[1 .. n]. Design and analyze an efficient
algorithm to compute the maximum number of points that can be earned from
the given sequence of tiles.

In both problems, the output is a single number: the maximum possible score.
Assume that you can find all English words that can be made from any set of at most
seven tiles, along with the point values of those words, in O(1) time.

17. (a) Suppose we are given a set L of n line segments in the plane, where each segment Homework: (a)(b) or(a)(c) or (b)(d) or (c)(d)has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all
2n endpoints are distinct. Describe and analyze an algorithm to compute the
largest subset of L in which no pair of segments intersects.

(b) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all
2n endpoints are distinct. Describe and analyze an algorithm to compute the
largest subset of L in which every pair of segments intersects.

(c) Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y2 = 1, and all 2n endpoints are
distinct. Describe and analyze an algorithm to compute the largest subset of L in
which no pair of segments intersects.

(d) Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y2 = 1, and all 2n endpoints are
distinct. Describe and analyze an algorithm to compute the largest subset of L in
which every pair of segments intersects.

18. Let P be a set of n points evenly distributed on the unit circle, and let S be a set Homework: (a)(b) or(a)(c) or (b)(d) or (c)(d)of m line segments with endpoints in P. The endpoints of the m segments are not
necessarily distinct; n could be significantly smaller than 2m.
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(a) Describe an algorithm to find the size of the largest subset of segments in S such
that every pair is disjoint. Two segments are disjoint if they do not intersect even
at their endpoints.

(b) Describe an algorithm to find the size of the largest subset of segments in S such
that every pair is interior-disjoint. Two segments are interior-disjoint if their
intersection is either empty or an endpoint of both segments.

(c) Describe an algorithm to find the size of the largest subset of segments in S such
that every pair intersects.

(d) Describe an algorithm to find the size of the largest subset of segments in S such
that every pair crosses. Two segments cross if they intersect but not at their
endpoints.

For full credit, all four algorithms should run in O(mn) time.

19. You are driving a bus along a highway, full of rowdy, hyper, thirsty students andHomework
a soda fountain machine. Each minute that a student is on your bus, that student
drinks one ounce of soda. Your goal is to drop the students off quickly, so that the
total amount of soda consumed by all students is as small as possible.

You know how many students will get off of the bus at each exit. Your bus begins
somewhere along the highway (probably not at either end) and move s at a constant
speed of 37.4 miles per hour. You must drive the bus along the highway; however,
you may drive forward to one exit then backward to an exit in the opposite direction,
switching as often as you like. (You can stop the bus, drop off students, and turn
around instantaneously.)

Describe an efficient algorithm to drop the students off so that they drink as little
soda as possible. Your input consists of the bus route (a list of the exits, together with
the travel time between successive exits), the number of students you will drop off at
each exit, and the current location of your bus (which you may assume is an exit).

20. Let’s define a summary of two strings A and B to be a concatenation of substrings ofHomework
the following form:

• ÎSNA indicates a substring SNA of only the first string A.
• �FOO indicates a common substring FOO of both strings.
• ÈBAR indicates a substring BAR of only the second string B.

A summary is valid if we can recover the original strings A and B by concatenating
the appropriate substrings of the summary in order and discarding the delimiters
Î, �, and È. Each regular character has length 1, and each delimiter Î, �, or È
has some fixed non-negative length ∆. The length of a summary is the sum of the
lengths of its symbols.

For example, each of the following strings is a valid summary of the strings
KITTEN and KNITTING:
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• �KÈN�ITTÎEÈI�NÈG has length 9+ 7∆.
• �KÈN�ITTÎENÈING has length 10+ 5∆.
• �KÎITTENÈNITTING has length 13+ 3∆.
• ÎKITTENÈKNITTING has length 14+ 2∆.

Describe and analyze an algorithm that computes the length of the shortest
summary of two given strings A[1 .. m] and B[1 .. n]. The delimiter length ∆ is also
part of the input to your algorithm. For example:

• Given strings KITTEN and KNITTING and ∆= 0, your algorithm should return 9.
• Given strings KITTEN and KNITTING and ∆= 1, your algorithm should return 15.
• Given strings KITTEN and KNITTING and ∆= 2, your algorithm should return 18.

21. Vankin’s Mile is an American solitaire game played on an n× n square grid. The
player starts by placing a token on any square of the grid. Then on each turn, the
player moves the token either one square to the right or one square down. The game
ends when player moves the token off the edge of the board. Each square of the grid
has a numerical value, which could be positive, negative, or zero. The player starts
with a score of zero; whenever the token lands on a square, the player adds its value
to his score. The object of the game is to score as many points as possible.

For example, given the grid below, the player can score 8− 6+ 7− 3+ 4 = 10
points by placing the initial token on the 8 in the second row, and then moving down,
down, right, down, down. (This is not the best possible score for these values.)

−1 7 −8 10 −5

−4 −9 8
⇓
−6 0

5 −2 −6
⇓
−6 7

−7 4 7⇒−3
⇓
−3

7 1 −6 4
⇓
−9

(a) Describe and analyze an efficient algorithm to compute the maximum possible Exam
score for a game of Vankin’s Mile, given the n× n array of values as input.

(b) In the European version of this game, appropriately called Vankin’s Kilometer, Homework
the player can move the token either one square down, one square right, or one
square left in each turn. However, to prevent infinite scores, the token cannot land
on the same square more than once. Describe and analyze an efficient algorithm
to compute the maximum possible score for a game of Vankin’s Kilometer, given
the n× n array of values as input.17

22. Suppose you are given an m× n bitmap, represented by an array M[1 .. n, 1 .. n] of 0s HomeworkExam: (a)Google17If we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be NP-hard.
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and 1s. A solid block in M is a subarray of the form M[i .. i′, j .. j′] in which all bits
are equal. A solid block is square if it has the same number of rows and columns.

(a) Describe an algorithm to find the maximum area of a solid square block in M in
O(n2) time.

(b) Describe an algorithm to find the maximum area of a solid block in M in O(n3)
time.

(c) Describe an algorithm to find the maximum area of a solid block in M in
O(n2 log n) time. [Hint: Divide and conquer.]

ª(d) Describe an algorithm to find the maximum area of a solid block in M in O(n2)
time.

23. Suppose you are given an array M[1 .. n, 1 .. n] of numbers, which may be positive,HomeworkGoogle negative, or zero, andwhich are not necessarily integers. Describe an algorithm to find
the largest sum of elements in any rectangular subarray of the form M[i .. i′, j .. j′].
For full credit, your algorithm should run in O(n3) time. [Hint: See problem 2.]

24. Describe and analyze an algorithm that finds the maximum-area rectangular patternHomework
that appears more than once in a given bitmap. Specifically, given a two-dimensional
array M[1 .. n, 1 .. n] of bits as input, your algorithm should output the area of the
largest repeated rectangular pattern in M . For example, given the bitmap shown on
the left in the figure below, your algorithm should return the integer 195, which is
the area of the 15× 13 doggo. (Although it doesn’t happen in this example, the two
copies of the repeated pattern might overlap.)

For full credit, your algorithm should run in O(n5) time; faster algorithms
are worth extra credit. The fastest algorithm I know for this problem runs in
O(n3 polylog n) time; however, achieving this bound requires data structures that
are outside the scope of this class.

25. Let P be a set of points in the plane in convex position. Intuitively, if a rubberHomework
band were wrapped around the points, then every point would touch the rubber
band. More formally, for any point p in P, there is a line that separates p from the
other points in P. Moreover, suppose the points are indexed P[1], P[2], . . . , P[n] in
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counterclockwise order around the “rubber band”, starting with the leftmost point
P[1].

This problem asks you to solve a special case of the traveling salesman problem,
where the salesman must visit every point in P, and the cost of moving from one
point p ∈ P to another point q ∈ P is the Euclidean distance |pq|.

(a) Describe a simple algorithm to compute the shortest cyclic tour of P.

(b) A simple tour is one that never crosses itself. Prove that the shortest tour of P
must be simple.

(c) Describe and analyze an efficient algorithm to compute the shortest tour of P
that starts at the leftmost point P[1] and ends at the rightmost point P[r].

(d) Describe and analyze an efficient algorithm to compute the shortest tour of P,
with no restrictions on the endpoints.

ª26. Describe and analyze an algorithm to solve the traveling salesman problem in Homework
O(2n poly(n)) time. Given an undirected n-vertex graph G with weighted edges,
your algorithm should return the weight of the lightest cycle in G that visits every
vertex exactly once, or∞ if G has no such cycles. [Hint: The obvious recursive
algorithm takes O(n!) time.]

— Randall Munroe, xkcd (http://xkcd.com/399/)Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

27. Let A= {A1, A2, . . . , An} be a finite set of strings over some fixed alphabet Σ. An edit Homework
center for A is a string C ∈ Σ∗ such that the maximum edit distance from C to any
string in A is as small as possible. The edit radius of A is the maximum edit distance
from an edit center to a string in A. A set of strings may have several edit centers,
but its edit radius is unique.

EditRadius(A) = min
C∈Σ∗

max
A∈A

Edit(A, C) EditCenter(A) = arg min
C∈Σ∗

max
A∈A

Edit(A, C)

(a) Describe and analyze an efficient algorithm to compute the edit radius of three
given strings.
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¨ª(b) Describe and analyze an efficient algorithm to approximate the edit radius of an Assumes familiaritywith approximationalgorithmsarbitrary set of strings within a factor of 2. (Computing the exact edit radius is
NP-hard unless the number of strings is fixed.)

ª28. Let D[1 .. n] be an array of digits, each an integer between 0 and 9. A digitalFun Homework
subsequence of D is a sequence of positive integers composed in the usual way from
disjoint substrings of D. For example, 3,4, 5,6, 8,9, 32,38, 46,64, 83,279 is a digital
subsequence of the first several digits of π:

3 ,1, 4 , 1, 5 , 9,2, 6 ,5, 3,5, 8 , 9 ,7, 9, 3,2 , 3, 8 , 4,6 ,2, 6, 4 , 3,3, 8, 3 , 2,7, 9

The length of a digital subsequence is the number of integers it contains, not
the number of digits; the preceding example has length 12. As usual, a digital
subsequence is increasing if each number is larger than its predecessor.

Describe and analyze an efficient algorithm to compute the longest increasing
digital subsequence of D. [Hint: Be careful about your computational assumptions.
How long does it take to compare two k-digit numbers?]

For full credit, your algorithm should run in O(n4) time; faster algorithms are
worth extra credit. The fastest algorithm I know for this problem runs in O(n3/2 log n)
time; achieving this bound requires several tricks, both in the design of the algorithm
and in its analysis, but nothing outside the scope of this class.18

ª29. Consider the following variant of the classical Tower of Hanoi problem. As usual,
there are n disks with distinct sizes, placed on three pegs numbered 0, 1, and 2.
Initially, all n disks are on peg 0, sorted by size from smallest on top to largest on
bottom. Our goal is to move all the disks to peg 2. In a single step, we can move the
highest disk on any peg to a different peg, provided we satisfy two constraints. First,
we must never place a smaller disk on top of a larger disk. Second—and this is the
non-standard part—we must never move a disk directly from peg 0 to peg 2.

Describe and analyze an algorithm to compute the exact number of moves
required to move all n disks from peg 0 to peg 2, subject to the stated restrictions.
For full credit, your algorithm should use only O(log n) arithmetic operations in the
worst case. (For the sake of analysis, assume that adding or multiplying two k-digit
numbers requires O(k) time.)

Splitting Sequences/Arrays

30. A basic arithmetic expression is composed of characters from the set {1,+,×} andExam
parentheses. Almost every integer can be represented by more than one basic

18With more advanced techniques, I believe the running time can be reduced to O(n3/2 log log n), but I
haven’t worked through the details.
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arithmetic expression. For example, all of the following basic arithmetic expression
represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the
minimum number of 1’s in a basic arithmetic expression whose value is equal to n.
The number of parentheses doesn’t matter, just the number of 1’s. For example, when
n= 14, your algorithm should return 8, for the final expression above. The running
time of your algorithm should be bounded by a small polynomial function of n.

31. Suppose you are given a sequence of integers separated by + and − signs; for Homework
example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places.
For example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated
by + and − signs, the maximum possible value the expression can take by adding
parentheses. Parentheses must be used only to group additions and subtractions; in
particular, do not use them to create implicit multiplication as in 1+ 3(−2)(−5) +
1− 6+ 7= 33.

32. Suppose you are given a sequence of integers separated by + and × signs; for
example:

1+ 3× 2× 0+ 1× 6+ 7

You can change the value of this expression by adding parentheses in different places.
For example:

(1+ (3× 2))× 0+ (1× 6) + 7= 13

((1+ (3× 2× 0) + 1)× 6) + 7= 19

(1+ 3)× 2× (0+ 1)× (6+ 7) = 208
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(a) Describe and analyze an algorithm to compute the maximum possible value the Exam
given expression can take by adding parentheses, assuming all integers in the
input are positive. [Hint: This is easy.]

(b) Describe and analyze an algorithm to compute the maximum possible value theExam
given expression can take by adding parentheses, assuming all integers in the
input are non-negative.

(c) Describe and analyze an algorithm to compute the maximum possible value theHomework
given expression can take by adding parentheses, with no restrictions on the
input numbers.

Assume any arithmetic operation takes O(1) time.

33. After graduating from Shampoo-Banana University, you decide to interview for aHomework
position at the Wall Street bank Long Live Boole. The managing director of the bank,
Eloob Egroeg, poses a ’solve-or-die’ problems to each new employee, which they must
solve within 24 hours. Those who fail to solve the problem are fired immediately!

Entering the bank for the first time, you notice that the employee offices are
organized in a straight row, with a large T or F printed on the door of each office.
Furthermore, between each adjacent pair of offices, there is a board marked by one
of the symbols ∧,∨, or ⊕. When you ask about these arcane symbols, Eloob confirms
that T and F represent the boolean values True and False, and the symbols on the
boards represent the standard boolean operators And, Or, and Xor. He also explains
that these letters and symbols describe whether certain combinations of employees
can work together successfully. At the start of any new project, Eloob hierarchically
clusters his employees by adding parentheses to the sequence of symbols, to obtain
an unambiguous boolean expression. The project is successful if this parenthesized
boolean expression evaluates to T .

For example, if the bank has three employees, and the sequence of symbols on
and between their doors is T ∧ F ⊕ T , there is exactly one successful parenthesization
scheme: (T ∧ (F ⊕ T )). However, if the list of door symbols is F ∧ T ⊕ F , there is no
way to add parentheses to make the project successful.

Eloob finally poses your solve-or-die interview question: Describe an algorithm
to decide whether a given sequence of symbols can be parenthesized so that the
resulting boolean expression evaluates to T . Your input is an array S[0 .. 2n], where
S[i] ∈ {T, F} when i is even, and S[i] ∈ {∨,∧,⊕} when i is odd.

34. This problem asks you to design algorithms to construct optimal binary search treesHomework: (a) or (b)
that satisfy additional balance constraints. Your input consists of a sorted array
A[1 .. n] of search keys and an array f [1 .. n] of frequency counts, where f [i] is the
number of searches for A[i]. This is exactly the same cost function as described in
Section 3.10. But now your task is to compute an optimal tree that satisfies some
additional constraints.
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(a) AVL trees were the earliest self-balancing balanced binary search trees, first
described in 1962 by Georgy Adelson-Velsky and Evgenii Landis. An AVL tree is a
binary search tree where for every node v, the height of the left subtree of v and
the height of the right subtree of v differ by at most one.

Describe and analyze an algorithm to construct an optimal AVL tree for a
given set of search keys and frequencies.

(b) Symmetric binary B-trees are another self-balancing binary trees, first described
by Rudolf Bayer; these are better known by the name red-black trees, after a
somewhat simpler reformulation by Leo Guibas and Bob Sedgwick in 1978. A
red-black tree is a binary search tree with the following additional constraints:
• Every node is either red or black.
• Every red node has a black parent.
• Every root-to-leaf path contains the same number of black nodes.
Describe and analyze an algorithm to construct an optimal red-black tree for a
given set of search keys and frequencies.

(c) AA trees were proposed by proposed by Arne Andersson in 1993 and slightly
simplified (and named) by Mark Allen Weiss in 2000. AA trees are also known
as left-leaning red-black trees, after a symmetric reformulation (with different
rebalancing algorithms) by Bob Sedgwick in 2006. An AA-tree is a red-black tree
with one additional constraint:
• No left child is red.19

Describe and analyze an algorithm to construct an optimal AA-tree for a given
set of search keys and frequencies.

35. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Homework
Glacierville hold a Round Table Mating Race. Several high-quality breeding snails
are placed at the edge of a round table. The snails are numbered in order around
the table from 1 to n. During the race, each snail wanders around the table, leaving
a trail of slime behind it. The snails have been specially trained never to fall off the
edge of the table or to cross a slime trail, even their own. If two snails meet, they are
declared a breeding pair, removed from the table, and whisked away to a romantic
hole in the ground to make little baby snails. Note that some snails may never find a
mate, even if the race goes on forever.

For every pair of snails, the Antarctican SLUG race organizers have posted a
monetary reward, to be paid to the owners if that pair of snails meets during the
Mating Race. Specifically, there is a two-dimensional array M[1 .. n, 1 .. n] posted on
the wall behind the Round Table, where M[i, j] = M[ j, i] is the reward to be paid if
snails i and j meet.

19Sedgewick’s reformulation requires that no right child is red. Whatever.
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Figure 3.9. The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates. The organizers must pay
M[3,4] +M[2,5] +M[1, 7].

Describe and analyze an algorithm to compute the maximum total reward that
the organizers could be forced to pay, given the array M as input.

36. You have mined a large slab of marble from a quarry. For simplicity, suppose theHomework
marble slab is a rectangle measuring n inches in height and m inches in width.
You want to cut the slab into smaller rectangles of various sizes—some for kitchen
counter tops, some for large sculpture projects, others for memorial headstones.
You have a marble saw that can make either horizontal or vertical cuts across any
rectangular slab. At any time, you can query the spot price P[x , y] of an x-inch by
y-inch marble rectangle, for any positive integers x and y . These prices depend on
customer demand, and people who buy marble counter tops are weird, so don’t make
any assumptions about them; in particular, larger rectangles may have significantly
smaller spot prices. Given the array of spot prices and the integers m and n as input,
describe an algorithm to compute how to subdivide an n×m marble slab to maximize
your profit.

37. Suppose you are given an m× n bitmap, represented by an array M[1 .. m, 1 .. n] ofHomework (any twoparts) 0s and 1s. A solid block in M is a subarray of the form M[i .. i′, j .. i′] in which all bits
are equal. Suppose you want to decompose M into as few disjoint blocks as possible.

One natural recursive partitioning strategy is called a guillotine subdivision. If the
entire bitmap M is a solid block, there is nothing to do. Otherwise, we cut M into
two smaller bitmaps along a horizontal or vertical line, and then decompose the two
smaller bitmaps recursively.

Any guillotine subdivision can be represented as a binary tree, where each
internal node stores the position and orientation of a cut, and each leaf stores a
single but 0 or 1 indicting the contents of the corresponding block. The size of a
guillotine subdivision is the number of leaves in the corresponding binary tree (that
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is, the final number of solid blocks), and the depth of a guillotine subdivision is the
depth of the corresponding binary tree.

Figure 3.10. A guillotine subdivision with size 8 and depth 5.
(a) Describe and analyze an algorithm to compute a guillotine subdivision of M of

minimum possible size.

(b) Show that a guillotine subdivision does not always yield a partition into the
smallest number of solid blocks.

(c) Describe and analyze an algorithm to compute a guillotine subdivision for M
with the smallest possible depth.

(d) Describe and analyze an algorithm to determine M[i, j], given the tree repre-
senting a guillotine decomposition for M and two indices i and j.

(e) Define the depth of a pixel M[i, j] in a guillotine subdivision to be the depth of
the leaf that contains that pixel. Describe and analyze an algorithm to compute
a guillotine subdivision for M such that the sum of the depths of the pixels as
small as possible.

(f) Describe and analyze an algorithm to compute a guillotine subdivision for M
such that the sum of the depths of the black pixels as small as possible.

«38. Congratulations! You’ve been hired by the giant online bookstore DeNile (“Not just a Homework
river in Egypt!”) to optimize their warehouse robots. Each book that DeNile sells
has a unique ISBN (International Standard Book Number), which is just a numerical
value. Each of DeNile’s warehouses contains a long row of bins, each containing
multiple copies of a single book. These bins are arranged in sorted order by ISBN;
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each bin’s ISBN is printed on the front of the bin in machine-readable form. Books
are retrieved from these bins by robots, which run along rails parallel to the row of
bins.

DeNile does not maintain a list of which bins contain which ISBN numbers; that
would be too simple! Instead, to retrieve a desired book, the robot must first find
that book’s bin using a binary search. Because the search requires physical motion
by the robot, we can no longer assume that each step of the binary search requires
O(1) time. Specifically:

• The robot always starts at the “0th bin” (where the books are loaded into boxes
to ship to customers).

• Moving the robot from the ith bin to the jth bin requires α|i − j| seconds for
some constant α.

• The robot must be directly in front of a bin in order to read that bin’s ISBN.
Reading an ISBN requires β seconds, for some constant β .

• Reversing the robot’s direction of motion (from increasing to decreasing or vice
versa) requires γ additional seconds, for some constant γ.

• When the robot finds the target bin, it extracts one book from that bin and
returns to “the 0th bin”.

Design and analyze an algorithm to compute a binary search tree over the bins that
minimizes the total time the robot spends searching for books. Your input is an array
f [1 .. n] of integers, where f [i] is the number of times that the robot will be asked
to retrieve a book from the ith bin, along with the time parameters α, β , and γ.

«39. A standard method to improve the cache performance of search trees is to pack moreHomework
search keys and subtrees into each node. A B-tree is a rooted tree in which each
internal node stores up to B keys and pointers to up to B + 1 children, each the root
of a smaller B-tree. Specifically, each node v stores three fields:

• a positive integer v.d ≤ B,
• a sorted array v.key[1 .. v.d], and
• an array v.child[0 .. v.d] of child pointers.

In particular, the number of child pointers is always exactly one more than the
number of keys.20

Each pointer v.child[i] is either Null or a pointer to the root of a B-tree whose
keys are all larger than v.key[i] and smaller than v.key[i + 1]. In particular, all

20Normally, B-trees are required to satisfy two additional constraints, which guarantee a worst-case
search cost of O(logB n): Every leaf must have exactly the same depth, and every node except possibly
the root must contain at least B/2 keys. However, in this problem, we are not interested in optimizing
the worst-case search cost, but rather the total cost of a sequence of searches, so we will not impose these
additional constraints.
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keys in the leftmost subtree v.child[0] are smaller than v.key[1], and all keys in the
rightmost subtree v.child[v.d] are larger than v.key[v.d].

Intuitively, you should have the following picture in mind:

[ ·•

��

< key[1]< ·•

��

< key[2]< ·•

��

· · · ·•

��

< key[d]< ·•

��

]

T0 T1 T2 · · · Td−1 Td

Here Ti is the subtree pointed to by child[i].
The cost of searching for a key x in a B-tree is the number of nodes in the path

from the root to the node containing x as one of its keys. A 1-tree is just a standard
binary search tree.

Fix an arbitrary positive integer B > 0. (I suggest B = 8.) Suppose your are given
a sorted array A[1, . . . , n] of search keys and a corresponding array F[1, . . . , n] of
frequency counts, where F[i] is the number of times that we will search for A[i]. Your
task is to describe and analyze an efficient algorithm to find a B-tree that minimizes
the total cost of searching for the given keys with the given frequencies.

(a) Describe a polynomial-time algorithm for the special case B = 2.
(b) Describe an algorithm for arbitrary B that runs in O(nB+c) time for some fixed

integer c.
(c) Describe an algorithm for arbitrary B that runs in O(nc) time for some fixed

integer c that does not depend on B.

40. A string w of parentheses (( and )) and brackets [[ and ]] is balanced if it satisfies one Homework: (a)(b) or(a)(c) or (a)(d)of the following conditions:

• w is the empty string.
• w= ((x)) for some balanced string x
• w= [[x]] for some balanced string x
• w= x y for some balanced strings x and y

For example, the string
w= (([[(())]][[]](())))[[(())(())]](())

is balanced, because w= x y , where

x = (( [[(())]] [[]] (()) )) and y = [[ (()) (()) ]] (()).

(a) Describe and analyze an algorithm to determine whether a given string of
parentheses and brackets is balanced.

(b) Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets.

47



3. DYNAMIC PROGRAMMING

(c) Describe and analyze an algorithm to compute the length of a shortest balanced
supersequence of a given string of parentheses and brackets.

(d) Describe and analyze an algorithm to compute the minimum edit distance from
a given string of parentheses and brackets to a balanced string of parentheses
and brackets.

ª(e) Describe and analyze an algorithm to compute the longest common balanced
subsequence of two given strings of parentheses and brackets.

ª(f) Describe and analyze an algorithm to compute the longest palindromic balanced
subsequence of a given string of parentheses and brackets.

ª(g) Describe and analyze an algorithm to compute the longest common palindromic
balanced subsequence of two given strings of parentheses and brackets.

For each problem, your input is an array w[1 .. n], where w[i] ∈ {((,)),[[,]]} for
every index i. (You may prefer to use different symbols instead of parentheses
and brackets—for example, L,R,l,r or Ã,Â,Ê,É—but please tell your grader what
symbols you’re using!)

ª41. Congratulations! Your research team has just been awarded a $50M multi-yearHomework
project, jointly funded by DARPA, Google, and McDonald’s, to produce DWIM: The
first compiler to read programmers’ minds! Your proposal and your numerous press
releases all promise that DWIM will automatically correct errors in any given piece
of code, while modifying that code as little as possible. Unfortunately, now it’s time
to start actually making the damn thing work.

As a warmup exercise, you decide to tackle the following necessary subproblem.
Recall that the edit distance between two strings is the minimum number of single-
character insertions, deletions, and replacements required to transform one string
into the other. An arithmetic expression is a string w such that

• w is a string of one or more decimal digits,
• w= (x) for some arithmetic expression x , or
• w= x � y for some arithmetic expressions x and y and some binary operator �.

Suppose you are given a string of tokens from the alphabet {#,�,(,)}, where #
represents a decimal digit and � represents a binary operator. Describe an algorithm
to compute the minimum edit distance from the given string to an arithmetic
expression.

42. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides orHomework
bases of four different types: adenine (A), cytosine (C), guanine (G), and uracil (U).
The sequence of an RNA molecule is a string b[1 .. n], where each character b[i] ∈
{A,C,G,U} corresponds to a base. In addition to the chemical bonds between adjacent
bases in the sequence, hydrogen bonds can form between certain pairs of bases. The
set of bonded base pairs is called the secondary structure of the RNA molecule.

48



Exercises

We say that two base pairs (i, j) and (i′, j′) with i < j and i′ < j′ overlap if
i < i′ < j < j′ or i′ < i < j′ < j. In practice, most base pairs are non-overlapping.
Overlapping base pairs create so-called pseudoknots in the secondary structure, which
are essential for some RNA functions, but are more difficult to predict.

Suppose we want to predict the best possible secondary structure for a given RNA
sequence. We will adopt a drastically simplified model of secondary structure:

• Each base can bond with at most one other base.
• Only A–U pairs and C–G pairs can bond.
• Pairs of the form (i, i + 1) and (i, i + 2) cannot bond.
• Bonded base pairs cannot overlap.

The last (and least realistic) restriction allows us to visualize RNA secondary structure
as a sort of fat tree, as shown below.
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Figure 3.11. Example RNA secondary structure with 21 bonded base pairs, indicated by heavy red lines. Gaps areindicated by dotted curves. This structure has score 22 + 22 + 82 + 12 + 72 + 42 + 72 = 187.

(a) Describe and analyze an algorithm that computes the maximum possible number
of bonded base pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large
gaps lead to chemical instabilities, so secondary structures with smaller gaps
are more likely. To account for this preference, let’s define the score of a
secondary structure to be the sum of the squares of the gap lengths. (This score
function is utterly fictional; real RNA structure prediction requires much more
complicated scoring functions.) Describe and analyze an algorithm that computes
the minimum possible score of a secondary structure for a given RNA sequence.

¨43. (a) Describe and analyze an efficient algorithm to determine, given a string w and a Homework, assumesfamiliarity with regularexpressionsregular expression R, whether w ∈ L(R).
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(b) Generalized regular expressions allow the binary operator ∩ (intersection) and
the unary operator ¬ (complement), in addition to the usual • (concatenation), +
(or), and ∗ (Kleene closure) operators. NFA constructions and Kleene’s theorem
imply that any generalized regular expression E represents a regular language
L(E).

Describe and analyze an efficient algorithm to determine, given a string w
and a generalized regular expression E, whether w ∈ L(E).

In both problems, assume that you are actually given a parse tree for the (generalized)
regular expression, not just a string.

Trees and Subtrees

44. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annualExam
mandatory holiday party! The employees at Giggle are organized into a strict
hierarchy, that is, a tree with the company president at the root. The all-knowing
oracles in Human Resources have assigned a real number to each employee measuring
how “fun” the employee is. In order to keep things social, there is one restriction on
the guest list: an employee cannot attend the party if their immediate supervisor
is also present. On the other hand, the president of the company must attend the
party, even though she has a negative fun rating; it’s her company, after all. Give an
algorithm that makes a guest list for the party that maximizes the sum of the “fun”
ratings of the guests.

45. Since so few people came to last year’s holiday party, the president of Giggle, Inc.Exam
decides to give each employee a present instead this year. Specifically, each employee
must receive on the three gifts: (1) an all-expenses-paid six-week vacation anywhere
in the world, (2) an all-the-pancakes-you-can-eat breakfast for two at Jumping Jack
Flash’s Flapjack Stack Shack, or (3) a burning paper bag full of dog poop. Corporate
regulations prohibit any employee from receiving exactly the same gift as his/her
direct supervisor. Any employee who receives a better gift than his/her direct
supervisor will almost certainly be fired in a fit of jealousy.

As Giggle, Inc.’s official party czar, it’s your job to decide which gift each employee
receives. Describe an algorithm to distribute gifts so that the minimum number of
people are fired. Yes, you may send the president a flaming bag of dog poop.

More formally, you are given a rooted tree T , representing the company hierarchy,
and you want to label each node in T with an integer 1, 2, or 3, so that every node
has a different label from its parent. The cost of an labeling is the number of nodes
that have smaller labels than their parents. Describe and analyze an algorithm to
compute the minimum cost of any labeling of the given tree T .

46. After the Flaming Dog Poop Holiday Debacle, you were strongly encouraged to seek
other employment, and so you left Giggle for its competitor Yeehaw! Unfortunately,
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Figure 3.12. A tree labeling with cost 9. The nine bold nodes have smaller labels than their parents. This is not theoptimal labeling for this tree.

the new president of Yeehaw! just decided to imitate Giggle by throwing her own
holiday party, and in light of your past experience, appointed you as the official party
organizer. The president demands that you invite exactly k employees, including the
president herself, and everyone who is invited is required to attend. Yeah, that’ll be
fun.

Just like at Giggle, employees at Yeehaw! are organized into a strict hierarchy:
a tree with the company president at the root. The all-knowing oracles in Human
Resources have assigned a real number to each employee indicating the awkwardness
of inviting both that employee and their immediate supervisor; a negative value
indicates that the employee and their supervisor actually like each other. Your goal
is to choose a subset of exactly k employees to invite, so that the total awkwardness
of the resulting party is as small as possible. For example, if the guest list does not
include both an employee and their immediate supervisor, the total awkwardness is
zero. The input to your algorithm is the tree T , the integer k, and the awkwardness
of each node in T .

(a) Describe an algorithm that computes the total awkwardness of the least awkward Exam
subset of k employees, assuming the company hierarchy is described by a binary
tree. That is, assume that each employee directly supervises at most two others.

ª(b) Describe an algorithm that computes the total awkwardness of the least awkward Homework
subset of k employees, with no restrictions on the company hierarchy.

47. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, Homework
only the root node knows the message. In a single round, any node that knows the
message can forward it to at most one of its children.

(a) Design an algorithm to compute the minimum number of rounds required for Exam
the message to be delivered to all nodes in a binary tree.

©(b) Design an algorithm to compute the minimum number of rounds required for Homework; assumesfamiliarity with greedyexchange argumentsthe message to be delivered to all nodes in an arbitrary rooted tree. [Hint: You
may find techniques in the next chapter useful to prove your algorithm is correct,
even though it’s not a greedy algorithm.]
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Figure 3.13. A message being distributed through a tree in five rounds.

48. One day, Alex got tired of climbing in a gym and decided to take a very large groupHomework
of climber friends outside to climb. The climbing area where they went, had a huge
wide boulder, not very tall, with various marked hand and foot holds. Alex quickly
determined an “allowed” set of moves that her group of friends can perform to get
from one hold to another.

The overall system of holds can be described by a rooted tree T with n vertices,
where each vertex corresponds to a hold and each edge corresponds to an allowed
move between holds. The climbing paths converge as they go up the boulder, leading
to a unique hold at the summit, represented by the root of T .21

Figure 3.14. Seven disjoint paths of length k = 3. This is not the largest such set of paths in this tree.
Alex and her friends (who are all excellent climbers) decided to play a game,

where as many climbers as possible are simultaneously on the boulder and each
climber needs to perform a sequence of exactly k moves. Each climber can choose an
arbitrary hold to start from, and all moves must move away from the ground. Thus,
each climber traces out a path of k edges in the tree T , all directed toward the root.
However, no two climbers are allowed to touch the same hold; the paths followed by
different climbers cannot intersect at all.

Describe and analyze an efficient algorithm to compute the maximum number
of climbers that can play this game. More formally, you are given a rooted tree T
and an integer k, and you want to find the largest possible number of disjoint paths
in T , where each path has length k. Do not assume that T is a binary tree. For

21Q: Why do computer science professors think trees have their roots at the top?
A: Because they’ve never been outside!
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example, given the tree T below and k = 3 as input, your algorithm should return
the integer 8.

49. Let T be a rooted binary tree with n vertices, and let k ≤ n be a positive integer. We Homework
would like to mark k vertices in T so that every vertex has a nearby marked ancestor.
More formally, we define the clustering cost of any subset K of vertices as

cost(K) =max
v

cost(v, K),

where the maximum is taken over all vertices v in the tree, and cost(v, K) is the
distance from v to its nearest ancestor in K:

cost(v, K) =











0 if v ∈ K

∞ if v is the root of T and v 6∈ K

1+ cost(parent(v)) otherwise

In particular, cost(K) =∞ if K excludes the root of T .

11

2

31

2 2

2 2

1

1

2

331 1

22

33

1

11

22

2

3

1

2 2

1

2 2

2 2

3 3

Figure 3.15. A subset of five vertices in a binary tree, with clustering cost 3.
ª(a) Describe a dynamic programming algorithm to compute, given the tree T and an

integer k, the minimum clustering cost of any subset of k vertices in T . For full
credit, your algorithm should run in O(n2k2) time.

(b) Describe a dynamic programming algorithm to compute, given the tree T and an
integer r, the size of the smallest subset of vertices whose clustering cost is at
most r. For full credit, your algorithm should run in O(nr) time.

(c) Show that your solution for part (b) implies an algorithm for part (a) that runs
in O(n2 log n) time.

50. This question asks you to find efficient algorithms to compute the largest common
rooted subtree of two given rooted trees. Recall that a rooted tree is a connected
acyclic graph with a designated node called the root. A rooted subtree of a rooted
tree consists of an arbitrary node and all its descendants. The precise definition of
“common” depends on which pairs of rooted trees we consider isomorphic.
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(a) Recall that a binary tree is a rooted tree in which every node has a (possibly Exam
empty) left subtree and a (possibly empty) right subtree. Two binary trees are
isomorphic if and only if they are both empty, or their left subtrees are isomorphic
and their right subtrees are isomorphic. Describe an algorithm to find the largest
common binary subtree of two given binary trees.

Figure 3.16. Two binary trees, with their largest common (rooted) subtree emphasized.
(b) In an ordered rooted tree, each node has a sequence of children, which are theHomework

roots of ordered rooted subtrees. Two ordered rooted trees are isomorphic if they
are both empty, or if their ith subtrees are isomorphic for every index i. Describe
an algorithm to find the largest common ordered subtree of two ordered trees T1
and T2.

(c) In an unordered rooted tree, each node has an unordered set of children, whichHomework
are the roots of unordered rooted subtrees. Two unordered rooted trees are
isomorphic if they are both empty, or the subtrees of each root can be ordered so
that their ith subtrees are isomorphic for every index i. Describe an algorithm to
find the largest common unordered subtree of two unordered trees T1 and T2.

51. This question asks you to find efficient algorithms to compute optimal subtrees in
unrooted trees—connected acyclic undirected graphs. A subtree of an unrooted tree
is any connected subgraph.

(a) Suppose you are given an unrooted tree T with weights on its edges, which mayExam
be positive, negative, or zero. Describe an algorithm to find a path in T with
maximum total weight.

(b) Suppose you are given an unrooted tree T with weights on its vertices, whichHomework
may be positive, negative, or zero. Describe an algorithm to find a subtree of T
with maximum total weight. [This was a 2016 Google interview question.]

(c) Let T1 and T2 be arbitrary ordered unrooted trees, meaning that the neighbors ofHomework
every node have a well-defined cyclic order. Describe an algorithm to find the
largest common ordered subtree of T1 and T2.

©ª(d) Let T1 and T2 be arbitrary unordered unrooted trees. Describe an algorithm toHomework, assumesfamiliarity with flows find the largest common unordered subtree of T1 and T2.

52. Rooted minors of rooted trees are a natural generalization of subsequences. A rooted
minor of a rooted tree T is any tree obtained by contracting one or more edges.
When we contract an edge u�v, where u is the parent of v, the children of v become
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new children of u and then v is deleted. In particular, the root of T is also the root of
every rooted minor of T .

Figure 3.17. A rooted tree and one of its rooted minors.
(a) Let T be a rooted tree with labeled nodes. We say that T is boring if, for each Homework

node x , all children of x have the same label; children of different nodes may
have different labels. Describe an algorithm to find the largest boring rooted
minor of a given labeled rooted tree.

(b) Suppose we are given a rooted tree T whose nodes are labeled with numbers. Homework
Describe an algorithm to find the largest heap-ordered rooted minor of T . That is,
your algorithm should return the largest rooted minor M such that every node
in M has a smaller label than its children in M .

(c) Suppose we are given a binary tree T whose nodes are labeled with numbers. Homework
Describe an algorithm to find the largest binary-search-ordered rooted minor of T .
That is, your algorithm should return a rooted minor M such that every node
in M has at most two children, and an inorder traversal of M is an increasing
subsequence of an inorder traversal of T .

(d) Recall that a rooted tree is ordered if the children of each node have a well-defined Homework
left-to-right order. Describe an algorithm to find the largest binary-search-ordered
minor of an arbitrary ordered tree T whose nodes are labeled with numbers.
Again, the left-to-right order of nodes in M should be consistent with their order
in T .

ª(e) Describe an algorithm to find the largest common ordered rooted minor of two Fun Homework
ordered labeled rooted trees.

©ª(f) Describe an algorithm to find the largest common unordered rooted minor of two Fun Homework
unordered labeled rooted trees. [Hint: Combine dynamic programming with
maximum flows.]
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