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Today

Two topics:

Structure of directed graphs

DFS and its properties

One application of DFS to obtain fast algorithms
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Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an O(n · (n + m)) time algorithm.
This lecture: sketch of a O(n + m) time
algorithm.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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Graph of SCCs
AB C

DE F

G H

Graph G

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

1 Vertices are S1, S2, . . . Sk

2 There is an edge (Si, Sj) if there is some u ∈ Si and v ∈ Sj

such that (u, v) is an edge in G.
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Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of Grev is the same as the
reversal of GSCC.

Proof.
Exercise.
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SCCs and DAGs

Proposition

For any graph G, the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should
be in the same SCC in G. Formal details: exercise.
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Part I

Directed Acyclic Graphs
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Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4
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Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.

2 A vertex u is a sink if it has no out-going edges.
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Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.
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Topological Sort: Example

a b c

d e

f g

h
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering ≺. G has a
cycle C = u1, u2, . . . , uk, u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.
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DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?
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Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?
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To Remember: Structure of Graphs

Undirected graph: connected components of G = (V,E) partition
V and can be computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in
O(m + n) time. GSCC gives information on the partition of V into
strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms
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Part II

Depth First Search (DFS)
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Depth First Search

DFS is a special case of Basic Search but is a versatile graph
exploration strategy. John Hopcroft and Bob Tarjan (Turing Award
winners) demonstrated the power of DFS to understand graph
structure. DFS can be used to obtain linear time (O(m + n))
algorithms for

1 Finding cut-edges and cut-vertices of undirected graphs

2 Finding strong connected components of directed graphs

3 Linear time algorithm for testing whether a graph is planar

Many other applications as well.
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DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u ∈ V(G) do

Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.
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Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

Edges classified into two types: uv ∈ E is a

1 tree edge: belongs to T

2 non-tree edge: does not belong to T
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Properties of DFS tree

Proposition
1 T is a forest

2 connected components of T are same as those of G.
3 If uv ∈ E is a non-tree edge then, in T, either:

1 u is an ancestor of v, or
2 v is an ancestor of u.

Question: Why are there no cross-edges?
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DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V(G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time
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pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS
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DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

add edge (u, v) to T
DFS(v)

post(u) = ++time
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Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in T
if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.
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DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

1 Tree edges that belong to T

2 A forward edge is a non-tree edges (x, y) such that
pre(x) < pre(y) < post(y) < post(x).

3 A backward edge is a non-tree edge (y, x) such that
pre(x) < pre(y) < post(y) < post(x).

4 A cross edge is a non-tree edges (x, y) such that the intervals
[pre(x), post(x)] and [pre(y), post(y)] are disjoint.
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Types of Edges

A

B

C D

Cross

Forward

Backward
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Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?
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Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v, u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v, u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.
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Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable
from vi.
Therefore, (vi−1, vi) (or (vk, v1) if i = 1) is a back edge.
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Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.
Assume post(v) > post(u) and (u, v) is an edge in G. We derive
a contradiction. One of two cases holds from DFS property.

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v. Edge (u, v) implies a cycle in G but G is
assumed to be DAG!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.
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Example

a b c

d e

f g

h
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Part III

Linear time algorithm for finding all
strong connected components of a

directed graph
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Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u)⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?
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Structure of a Directed Graph
AB C

DE F

G H

Graph G

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2

3

4
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3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)

4
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)

4 Therefore, total time O(n + m)!
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Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!
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Linear Time Algorithm
...for computing the strong connected components in G

do DFS(Grev) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the SCCs
of G.
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Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph Grev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering
of reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example
Removing connected components: 1

Original graph G with rev post
numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}
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Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}
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Linear Time Algorithm: An Example
Removing connected components: 3

Do DFS from vertex H,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}
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Linear Time Algorithm: An Example
Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C,D}.

SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}
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Linear Time Algorithm: An Example
Final result

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}
Which is the correct answer!
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Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph
G = (V,E) show that the meta-graph GSCC can be obtained in
O(m + n) time.
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Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

Is the problem solvable when G is strongly connected?

Is the problem solvable when G is a DAG?

If the above two are feasible then is the problem solvable in a
general directed graph G by considering the meta graph GSCC?
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Part IV

An Application to make
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Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.
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make Utility [Feldman]

1 Unix utility for automatically building large software applications
2 A makefile specifies

1 Object files to be created,
2 Source/object files to be used in creation, and
3 How to create them
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An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c
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makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c
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Computational Problems for make

1 Is the makefile reasonable?

2 If it is reasonable, in what order should the object files be
created?

3 If it is not reasonable, provide helpful debugging information.

4 If some file is modified, find the fewest compilations needed to
make application consistent.
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Algorithms for make

1 Is the makefile reasonable? Is G a DAG?

2 If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

3 If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

1 Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.
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Take away Points

1 Given a directed graph G, its SCCs and the associated acyclic
meta-graph GSCC give a structural decomposition of G that
should be kept in mind.

2 There is a DFS based linear time algorithm to compute all the
SCCs and the meta-graph. Properties of DFS crucial for the
algorithm.

3 DAGs arise in many application and topological sort is a key
property in algorithm design. Linear time algorithms to compute
a topological sort (there can be many possible orderings so not
unique).
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