
CS 374: Algorithms & Models of Computation

Chandra Chekuri Manoj Prabhakaran

University of Illinois, Urbana-Champaign

Fall 2015

Chandra & Manoj (UIUC) CS374 1 Fall 2015 1 / 59



Today

Two topics:

Structure of directed graphs

DFS and its properties

One application of DFS to obtain fast algorithms

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 59



Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an O(n · (n + m)) time algorithm.
This lecture: sketch of a O(n + m) time
algorithm.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 59



Graph of SCCs
AB C

DE F

G H

Graph G

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

1 Vertices are S1, S2, . . . Sk

2 There is an edge (Si, Sj) if there is some u ∈ Si and v ∈ Sj

such that (u, v) is an edge in G.

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 59



Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of Grev is the same as the
reversal of GSCC.

Proof.
Exercise.

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 59



SCCs and DAGs

Proposition

For any graph G, the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should
be in the same SCC in G. Formal details: exercise.

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 59



Part I

Directed Acyclic Graphs

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 59



Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 59



Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.

2 A vertex u is a sink if it has no out-going edges.

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 59



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 59



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 59



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 59



Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 59



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 59



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 59



Topological Sort: Example

a b c

d e

f g

h

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 59



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering ≺. G has a
cycle C = u1, u2, . . . , uk, u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 59



DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 59



Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 59



To Remember: Structure of Graphs

Undirected graph: connected components of G = (V,E) partition
V and can be computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in
O(m + n) time. GSCC gives information on the partition of V into
strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 59



Part II

Depth First Search (DFS)

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 59



Depth First Search

DFS is a special case of Basic Search but is a versatile graph
exploration strategy. John Hopcroft and Bob Tarjan (Turing Award
winners) demonstrated the power of DFS to understand graph
structure. DFS can be used to obtain linear time (O(m + n))
algorithms for

1 Finding cut-edges and cut-vertices of undirected graphs

2 Finding strong connected components of directed graphs

3 Linear time algorithm for testing whether a graph is planar

Many other applications as well.

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 59



DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u ∈ V(G) do

Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 59



Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

Edges classified into two types: uv ∈ E is a

1 tree edge: belongs to T

2 non-tree edge: does not belong to T

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 59



Properties of DFS tree

Proposition
1 T is a forest

2 connected components of T are same as those of G.
3 If uv ∈ E is a non-tree edge then, in T, either:

1 u is an ancestor of v, or
2 v is an ancestor of u.

Question: Why are there no cross-edges?

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 59



DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V(G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 59



Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 59



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 59



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 59



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 59



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 59



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 59



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 59



DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

add edge (u, v) to T
DFS(v)

post(u) = ++time

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 59



Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 59



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in T
if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 59



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in T
if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 59



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in T
if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 59



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in T
if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 59



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in T
if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 59



DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

1 Tree edges that belong to T

2 A forward edge is a non-tree edges (x, y) such that
pre(x) < pre(y) < post(y) < post(x).

3 A backward edge is a non-tree edge (y, x) such that
pre(x) < pre(y) < post(y) < post(x).

4 A cross edge is a non-tree edges (x, y) such that the intervals
[pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 59



Types of Edges

A

B

C D

Cross

Forward

Backward

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 59



Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 59



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v, u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v, u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 59



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v, u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v, u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 59



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v, u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v, u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 59



Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable
from vi.
Therefore, (vi−1, vi) (or (vk, v1) if i = 1) is a back edge.

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 / 59



Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.
Assume post(v) > post(u) and (u, v) is an edge in G. We derive
a contradiction. One of two cases holds from DFS property.

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v. Edge (u, v) implies a cycle in G but G is
assumed to be DAG!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 59



Example

a b c

d e

f g

h

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 59



Part III

Linear time algorithm for finding all
strong connected components of a

directed graph

Chandra & Manoj (UIUC) CS374 37 Fall 2015 37 / 59



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u)⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 59



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u)⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 59



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u)⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 59



Structure of a Directed Graph
AB C

DE F

G H

Graph G

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 59



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2

3

4

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 59



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2

3

4

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 59



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2 ... since there are no edges coming out a sink!

3

4

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 59



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)

4

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 59



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)

4 Therefore, total time O(n + m)!

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 59



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!

Chandra & Manoj (UIUC) CS374 41 Fall 2015 41 / 59



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!

Chandra & Manoj (UIUC) CS374 41 Fall 2015 41 / 59



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!

Chandra & Manoj (UIUC) CS374 41 Fall 2015 41 / 59



Linear Time Algorithm
...for computing the strong connected components in G

do DFS(Grev) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the SCCs
of G.

Chandra & Manoj (UIUC) CS374 42 Fall 2015 42 / 59



Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph Grev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering
of reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A

Chandra & Manoj (UIUC) CS374 43 Fall 2015 43 / 59



Linear Time Algorithm: An Example
Removing connected components: 1

Original graph G with rev post
numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

Chandra & Manoj (UIUC) CS374 44 Fall 2015 44 / 59



Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

Chandra & Manoj (UIUC) CS374 45 Fall 2015 45 / 59



Linear Time Algorithm: An Example
Removing connected components: 3

Do DFS from vertex H,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

Chandra & Manoj (UIUC) CS374 46 Fall 2015 46 / 59



Linear Time Algorithm: An Example
Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C,D}.

SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}

Chandra & Manoj (UIUC) CS374 47 Fall 2015 47 / 59



Linear Time Algorithm: An Example
Final result

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F,B,E}, {A,C,D}
Which is the correct answer!

Chandra & Manoj (UIUC) CS374 48 Fall 2015 48 / 59



Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph
G = (V,E) show that the meta-graph GSCC can be obtained in
O(m + n) time.

Chandra & Manoj (UIUC) CS374 49 Fall 2015 49 / 59



Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

Is the problem solvable when G is strongly connected?

Is the problem solvable when G is a DAG?

If the above two are feasible then is the problem solvable in a
general directed graph G by considering the meta graph GSCC?

Chandra & Manoj (UIUC) CS374 50 Fall 2015 50 / 59



Part IV

An Application to make

Chandra & Manoj (UIUC) CS374 51 Fall 2015 51 / 59



Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.

Chandra & Manoj (UIUC) CS374 52 Fall 2015 52 / 59



make Utility [Feldman]

1 Unix utility for automatically building large software applications
2 A makefile specifies

1 Object files to be created,
2 Source/object files to be used in creation, and
3 How to create them

Chandra & Manoj (UIUC) CS374 53 Fall 2015 53 / 59



An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c

Chandra & Manoj (UIUC) CS374 54 Fall 2015 54 / 59



makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c

Chandra & Manoj (UIUC) CS374 55 Fall 2015 55 / 59



Computational Problems for make

1 Is the makefile reasonable?

2 If it is reasonable, in what order should the object files be
created?

3 If it is not reasonable, provide helpful debugging information.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

Chandra & Manoj (UIUC) CS374 56 Fall 2015 56 / 59



Algorithms for make

1 Is the makefile reasonable? Is G a DAG?

2 If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

3 If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

1 Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.

Chandra & Manoj (UIUC) CS374 57 Fall 2015 57 / 59



Take away Points

1 Given a directed graph G, its SCCs and the associated acyclic
meta-graph GSCC give a structural decomposition of G that
should be kept in mind.

2 There is a DFS based linear time algorithm to compute all the
SCCs and the meta-graph. Properties of DFS crucial for the
algorithm.

3 DAGs arise in many application and topological sort is a key
property in algorithm design. Linear time algorithms to compute
a topological sort (there can be many possible orderings so not
unique).

Chandra & Manoj (UIUC) CS374 58 Fall 2015 58 / 59


	Directed Acyclic Graphs
	Depth First Search (DFS)
	DFS
	DFS in Directed Graphs

	Linear time algorithm for finding all strong connected components of a directed graph
	An Application to make
	make utility
	Computational Problems



