
Undecidability

Lecture 21

1

C
S

37
4

Today

Undecidable Problems

Proving undecidability

Using reductions to prove more undecidability

2

C
S

37
4

Language of Universal TM
Language recognized by U:

L(U) = { (z,w) | U accepts (z,w) } 
 = { (z,w) | Mz accepts w }

We will call L(U) = ACCEPT

Today:

ACCEPT is undecidable!

3

No matter what
encoding schemes

are used

Mz is the TM
encoded by the

string Mz

pair of binary
strings encoded as

a binary string

C
S

37
4

Cantor’s Diagonal Slash

Is the set of all infinitely long
binary strings countable?

Suppose it was: consider
enumerating them in a table

Consider the string
corresponding to the
“flipped diagonal”

It doesn’t appear in this
table!

4

Si
S1 = 1 0 0 1 0 0 0 0 1

S2 = 0 0 1 0 1 0 0 1 1

S3 = 1 1 1 1 1 1 1 0 0

S4 = 1 1 0 1 0 1 0 1 1

S5 = 1 1 0 0 0 0 1 0 0

S6 = 0 0 0 0 0 0 1 1 0

S7 = 0 1 0 1 0 1 0 1 1

0 1 0 0 1 1 1 . .

C
S

37
4

Undecidability

D = “diagonal language”  
 = { w | Mw accepts w }

D̅ = { w | Mw doesn’t accept w }

D̅ does not appear as a row
in this table. Hence not
recognizable!

5

w 0 1 00 01 10 11 000 001 010

z
0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

00 1 1 1 1 1 1 1 0 0

01 1 1 0 1 0 1 0 1 1

10 1 1 0 0 0 0 1 0 0

11 0 0 0 0 0 0 1 1 0

000 0 1 0 1 0 1 0 1 1

Table of languages
recognized by TMs

T(z,w) = 1 iff Mz accepts w

0 1 0 0 1 1 1 . .

C
S

37
4

Map

6

R

R.E.
D D̅

C
S

37
4

Undecidability

7

Table of languages
recognized by TMs

T(z,w) = 1 iff Mz accepts w

0 1 0 0 1 1 1 . .

If ACCEPT decidable, can
compute T(z,w) using a TM that
halts on every input

Then D̅ would be decidable too:
On input w, compute T(w,w) and
accept iff it is 0

Hence ACCEPT undecidable!

w 0 1 00 01 10 11 000 001 010

z
0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

00 1 1 1 1 1 1 1 0 0

01 1 1 0 1 0 1 0 1 1

10 1 1 0 0 0 0 1 0 0

11 0 0 0 0 0 0 1 1 0

000 0 1 0 1 0 1 0 1 1

Entries indicate if 
(z,w) ∈ ACCEPT

C
S

37
4

Map

8

R

R.E.
D D̅

ACCEPT

C
S

37
4

Reduction

1. Showed that if ACCEPT is
decidable, then D̅ decidable
(using a “reduction” from D̅ to
ACCEPT)

2. We already saw D̅ not
decidable

3. Hence ACCEPT not
decidable

9

We just saw how a “reduction” can show impossibility

w 0 1 00 01 10 11 000 001 010

z
0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

00 1 1 1 1 1 1 1 0 0

01 1 1 0 1 0 1 0 1 1

10 1 1 0 0 0 0 1 0 0

11 0 0 0 0 0 0 1 1 0

000 0 1 0 1 0 1 0 1 1

C
S

37
4

Reduction

The task of solving L1 is reduced to the task of solving L2

Positive implication:  
If we can solve L2, then we can solve L1

Negative implication:  
If we can’t solve L1, then we can’t solve L2

10

Reduction from L1 to L2 (L1 ≤ L2):

Any instance of L1 can be solved by solving an instance of L2
(and there is an algorithm to change the L1-instance to the L2-instance)

C
S

37
4

Reduction

11

We use a simple notion of reduction (for most part).  
Algorithm for solving L1 should behave as follows:

A (mapping) reduction from L1 to L2:  
a computable function f s.t. ∀w, w ∈ L1 ⇔ f(w) ∈ L2

O2

M1

w

f(w) f(w) ∈ L2?
w ∈ L1?

fOn input w, compute f(w)  
Accept iff f(w) ∈ L2

Our “reduction” of D̅ to
ACCEPT does not fit this. It

was from D̅ to ACCEPTC

C
S

37
4

Reduction

12

L1

L2

A (mapping) reduction from L1 to L2:  
a computable function f s.t. ∀w, w ∈ L1 ⇔ f(w) ∈ L2

Note: a reduction from L1 to L2 
is also a reduction from L̅1 to L̅2

L1 ≤ L2 ⇔ L̅1 ≤ L̅2

C
S

37
4

Reduction

13

A (mapping) reduction from L1 to L2:  
a computable function f s.t. ∀w, w ∈ L1 ⇔ f(w) ∈ L2

O2

M1

w

f(w) f(w) ∈ L2?
w ∈ L1?

fOn input w, compute f(w)  
Accept iff f(w) ∈ L2

Positive implication:  
If L1 ≤ L2 then: can “solve” L2 ⇒ can “solve” L1

L2 decidable ⇒ L1 decidable 
L2 recognizable ⇒ L1 recognizable

Negative implication: If L1 ≤ L2 then:
L1 undecidable ⇒ L2 undecidable  

L1 unrecognizable ⇒ L2 unrecognizable

C
S

37
4

Halting Problem
HALT = { (z,w) | Mz halts on input w }

Claim: ACCEPT ≤ HALT

f(z,w) = (zʹ,w) where Mzʹ behaves as follows:

On input x, run Mz on x.  
If Mz halts rejecting x, go into an infinite loop.  
If Mz halts accepting x, halt (and say, accept).

(zʹ,w) ∈ HALT ⇔ (z,w) ∈ ACCEPT

ACCEPT undecidable ⇒ HALT undecidable14

C
S

37
4

Map

15

R

R.E.
D D̅

ACCEPT

HALT

C
S

37
4

Complement & Undecidability
ACCEPT is undecidable, but is recognizable (why?)

ACCEPTC is undecidable too (why?)

Is ACCEPTC recognizable?

Claim: ACCEPTC is not recognizable

If not, ACCEPT and ACCEPTC both recognizable,  
Then ACCEPT would be decidable! (why?)

16

LC stands for L̅

C
S

37
4

Map

17

R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

C
S

37
4

Empty Language Problem
EMPTY = { z | L(Mz) = Ø }

Claim: ACCEPTC ≤ EMPTY

f(z,w) = zʹ where Mzʹ behaves as follows:

On input x, run Mz on w.  
If Mz halts rejecting w, reject x. 

If Mz halts accepting w, accept x.

zʹ ∈ EMPTY ⇔ (z,w) ∉ ACCEPT

ACCEPTC unrecognizable ⇒ EMPTY is unrecognizable
18

C
S

37
4

Map

19

R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

EMPTY

C
S

37
4

Dovetailing
Claim: EMPTYC = { z | L(Mz) ≠ Ø } is recognizable

EMPTYC = { z | ∃w Mz accepts w }. 
 Given z, how to check if there is some w that Mz accepts?

Run Mz on all w, and if it accepts any, accept (if not keep trying)

In “parallel”? Can’t run infinitely many executions in parallel!

Solution: increasingly more 
executions in parallel

20

C
S

37
4

Exploring the ID Graph

21

ID1(w0)ID0(w0) ID2(w0) ID3(w0) ID4(w0)

ID1(w1)ID0(w1) ID2(w1) ID3(w1) ID4(w1) ID5(w1)

ID1(w2)ID0(w2) ID2(w2) ID3(w2)

Sequential Simulation: Depth first

Goes on forever…

Never gets here!

C
S

37
4

Exploring the ID Graph

22

ID1(w0)ID0(w0) ID2(w0) ID3(w0) ID4(w0)

ID1(w1)ID0(w1) ID2(w1) ID3(w1) ID4(w1) ID5(w1)

ID1(w2)ID0(w2) ID2(w2) ID3(w2)

Parallel Simulation: Breadth first
Never gets here!

Goes on forever

…

C
S

37
4

Dovetailing

23

ID1(w0)ID0(w0) ID2(w0) ID3(w0) ID4(w0)

ID1(w1)ID0(w1) ID2(w1) ID3(w1) ID4(w1) ID5(w1)

ID1(w2)ID0(w2) ID2(w2) ID3(w2)

Explore increasingly more executions for 
increasingly more steps

…

Will discover an accepting  
execution if one exists

C
S

37
4

coR.E.

Map

24

R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

EMPTYEMPTYC

C
S

37
4

Language Equality Problem

Claim: EMPTY ≤ EQUAL

 
f(z) = (z, zʹ) where Mzʹ rejects all inputs

(z, zʹ) ∈ EQUAL ⇔ z ∈ EMPTY

EMPTY unrecognizable ⇒ EQUAL unrecognizable

25

EQUAL = { (z, zʹ) | L(Mz) = L(Mzʹ) }

C
S

37
4

Language Equality Problem

Claim: ACCEPT ≤ EQUAL

f(z,w) = (z1,z2) where Mz1 & Mz2 behave as follows:

Mz1 accepts all strings. i.e., L(Mz1) = Σ*  
Mz2 runs Mz on w and if it accepts, accepts its input

(z1,z2) ∈ EQUAL ⇔ (z,w) ∈ ACCEPT

Hence EQUAL is not decidable.

Also, EQUALC is not recognizable. (Why?)
26

ACCEPTC ≤ EQUALC

EQUAL = { (z, zʹ) | L(Mz) = L(Mzʹ) }

C
S

37
4

coR.E.

Map

27

R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

EMPTYEMPTYC

EQUAL

C
S

37
4

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word  

Can one arrange them (using any number of copies of each
type) so that the top and bottom strings are identical?

28

abb
a

ba
bbb

a
ab

abb
baa

b
bbb

abb
a

ba
bbb

abb
a

a
ab

abb
baa

b
bbb

Theorem [Post’46]: HALT reduces to PostCP  
— a “combinatorial” problem
PostCP is undecidable.

C
S

37
4

coR.E.

Map

29

R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

EMPTYEMPTYC

EQUAL

PCP PCPC

C
S

37
4

Recap
‣ If L1 ≤ L2 then:

‣ If L1 is undecidable, so is L2
‣ If L1 is unrecognizable, so is L2
‣ L̅1 ≤ L̅2

‣ L and L̅ recognizable ⇔ L and L̅ decidable ⇔ L decidable

‣ Corollary: If L recognizable but undecidable, then L̅ not
recognizable

‣ e.g., ACCEPTC is not recognizable
‣ e.g.: If ACCEPT ≤ L, then L̅ not recognizable (Why?)
‣ If L is recognizable, then so is Lʹ = { x | ∃w, (x,w) ∈ L } 

(via dovetailing)
30

