Uv\d@.@:id&biu%j

Today ‘

Undecidable Problems
Proving undecidability

Using reductions to prove more undecidability

CS 374

N

Language of Universal TM ‘

Language recognized by U.

L(U)={(z,w) | U accepts (z,w) }
={ (z,w)| M, accepts w}

(" :)
pair of binary We will call L(U) = ACCEPT M_is the TM
strings encoded as encoded by the

a binary string string M,
\- Today: b

ACCEPT is undecidable!T No matter what

encoding schemes
are used

CS 374

w

CS 374

o

Cantor’s Diagonal Slash

Is the set of all infinitely long
binary strings countable?

Suppose it was: consider
enumerating them in a table

Consider the string
corresponding to the
“flipped diagonal”

It doesn’t appear in this
table!

1

0

0

1

CS 374

(6)]

Undecidability

Table of languages

recognized by TMs

T(z,w) =1 iff M, accepts w

D = "diagonal language”
={w| M, accepts w }

D ={w]| M, doesn’'t acceptw }
D does not appear as a row

In this table. Hence not
recognizable!

1 1

00

01

10

11

000

11 000 001 010

> S 374

CS 374

7

Undecidability

Table of languages

Entries indicate if
(zw) € ACCEPT |0

recognized by TMs V
T(z,w) =1 iff M, accepts w
It ACCEPT decidable, can

compute T(z,w) using a TM that
halts on every input

Then D would be decidable too:

On input w, compute T(w,w) and
accept iff itis 0

Hence ACCEPT undecidable!

o o0 1 1 1
w O 00 01 10 11 00O 001 010
V4
0
1
00
01
10
11
000

* S 374

ﬁ“:
N~
QD)
@p)
O

9

Reduction

We just saw how a “reduction” can show impossibility

1. Showed that it ACCEPT is
decidable, then D decidable
(using a “reduction” from D to

ACCEPT)

2. We already saw D not
decidable

3. Hence ACCEPT not
decidable

w
V4

00

01

10

11

000

00 01 10 11 00O 001 010

CS 374

—

0

Reduction

Reduction from L to L (L1 < L»):

Any instance of L; can be solved by solving an instance of L
(and there is an algorithm to change the L;-instance to the Ly-instance)

The task of solving L is reduced to the task of solving L»

Positive implication:
If we can solve L., then we can solve 4

Negative implication:
If we can’t solve L;, then we can’t solve L,

CS 374

s

Red u Ct | O n Our “reduction” of D to

ACCEPT does not fit this. It
was from D to ACCEPTC

\

Y

We use a simple notion of reduction (for most part).
Algoritnm for solving L; should behave as follows:

On input w, compute f(w) 15 -) | o, PWELN |
Accept iff f(w) € L» W wE L?
M,

A (mapping) reduction from L; to Lo:
a computable function fs.t. Vw,w &€ L) < fiw) € L

CS 374

Reduction

A (mapping) reduction from L; to Lo:
a computable function fs.t. Vw,we L < flw) € L,

Note: a reduction from L; to L,
is also a reduction from L; to L»

Li<l,h=L <[l

CS 374

—

Reduction

A (mapping) reduction from L; to Lo:
a computable function fs.t. Vw,we& L, < flw) € L,

On input w, compute f(w) —> 7 M, 05 fiw) € La? >

Accept iff f(w) € L, w wE L?

M
Positive implication: 1

If L1 < L, then: can “solve” L, = can “solve” L4

L, decidable = L; decidable
L, recognizable = L; recognizable

Negative implication: If L; < L, then:
L, undecidable = L, undecidable
L, unrecognizable = L, unrecognizable

CS 374

&=

Halting Problem

HALT = { (z,w) | M halts on input w }

Claim: ACCEPT < HALT

| —

flz,w) = (Z',w) where M, behaves as follows:

On input x, run M; on x.
It M, halts rejecting x, go into an infinite loop.
It M, halts accepting x, halt (and say, accept).

(7 . w) € HALT <> (z,w) € ACCEPT |

ACCEPT undecidable = HALT undecidable

o (CS 374

Complement & Undecidability

ACCEPT is undecidable, but is recognizable (why?)

ACCEPTCis undecidable too (why?)

[LC stands for ir |Is ACCEPT*C recognizable”

Claim: ACCEPT€ is not recognizable

It not, ACCEPT and ACCEPTC both recognizable,
Then ACCEPT would be decidable! (why?)

CS 374

N CS 374

Empty Language Problem

EMPTY={z|LM,)=0 }

Claim: ACCEPT¢ < EMPTY

flz,w) = 7/ where M, behaves as follows:

On input x, run M, on w.
It M, halts rejecting w, reject x.
If M, halts accepting w, accepit x.

7 € EMPTY & (z,w) ¢ ACCEPT |

CS 374

—

ACCEPTC unrecognizable = EMPTY is unrecognizable

© (S 374

CS 374

Dovetailing

Claim: EMPTYC ={ z| L(M;) # @ } is recognizable

EMPTYC ={ z|dw M, accepts w }.
Given z, how to check if there is some w that M, accepts?

Run M; on all w, and if it accepts any, accept (if not keep trying)
In “parallel”? Can’t run infinitely many executions in parallel!

Solution: increasingly more
executions in parallel

Exploring the ID Graph

Sequential Simulation: Depth first

A
[Goes on forever]
A

[Never gets here!)

CS 374

CS 374

Exploring the ID Graph

Parallel Simulation: Breadth first

Never gets here'

E { Goes on forever J

Dovetailing @

Explore increasingly more executions for
iIncreasingly more steps

5 : Will discover an accepting
& execution if one exists

X CS 374

Language Equality Problem ‘

EQUAL={(z,Z) | L(M;) = L(M7) }

Claim: EMPTY < EQUAL

' fz) = (z,7") where My rejects all inputs

(z,7')) € EQUAL & 7 € EMPTY
|

EMPTY unrecognizable = EQUAL unrecognizable

CS 374

Language Equality Problem ®

EQUAL ={ (z,Z') | LIM;) = L(M;) }

Claim: ACCEPT < EQUAL i]
ACCEPTC < EQUALC

—

flz,w) = (21,22) Where Mz & A}z; behave as follows:

Mz, accepts all strings. i.e., L(Mz) = 2* |
Mz, runs M. on w and if it accepts, accepts its input |

(z1,22) € EQUAL < (z,w) € ACCEPT

Hence EQUAL is not decidable.

CS 374

Also, EQUALC is not recognizable. (Why?)

J
D

N CS 374

Post Correspondence Problem

Theorem [Post’46]: HALT reduces to PostCP
— a ‘combinatorial” problem

PostCP Is undecidable.

Given: Dominoes, each with a top-word and a bottom-word

b ba abb abb a
bbb bbb a baa ab

Can one arrange them (using any number of copies of each
type) so that the top and bottom strings are identical?

abb ba abb a abb b
a bbb a ab baa bbb

8 (S 374

CS 374

v

v

v

v

Recap

If L1 < Lrthen:
» If L1 is undecidable, sois L,
» If Liis unrecognizable, so is L
4 Z1 < Zz

L and L recognizable & L and L decidable & L decidable

» Corollary: If L recognizable but undecidable, then L not
recognizable

» e.g., ACCEPTC Is not recognizable
e.g.: If ACCEPT < L, then L not recognizable (Why?)

It Lis recognizable, thensois L' ={x13w, xw)EL}
(via dovetailing)

