
Discussion 12b: Friday, April 5, 2019 Version: 1.0 CS/ECE 374, Spring 2019

Proving that a language L is undecidable by reduction requires several steps.

1. Choose a language L′ that you already know is undecidable (because we told you so in class). The simplest
choice is usually the standard halting language

Halt :=
{
〈M,w〉

∣∣ M halts on w
}

2. Describe an algorithm that decides L′, using an algorithm that decides L as a black box. Typically your
reduction will have the following form:

Given an arbitrary string x, construct a special string y,
such that y ∈ L if and only if x ∈ L′.

In particular, if L = Halt, your reduction will have the following form:

Given the encoding 〈M,w〉 of a Turing machine M and a string w,
construct a special string y, such that

y ∈ L if and only if M halts on input w.

3. Prove that your algorithm is correct. This proof almost always requires two separate steps:

(a) Prove that if x ∈ L′ then y ∈ L.
(b) Prove that if x 6∈ L′ then y 6∈ L.

Very important: Name every object in your proof, and always refer to objects by their names. Never refer
to “the Turing machine” or “the algorithm” or “the input string” or (gods forbid) “it” or “this”, even in casual
conversation, even if you’re “just” explaining your intuition, even when you’re just thinking about the reduction.

Prove that the following languages are undecidable.

1 AcceptIllini :=
{
〈M〉

∣∣ M accepts the string ILLINI
}

2 AcceptThree :=
{
〈M〉

∣∣ M accepts exactly three strings
}

3 AcceptPalindrome :=
{
〈M〉

∣∣ M accepts at least one palindrome
}

1


