
Universal Turing Machines & 
Church-Turing Thesis &

Undecidability



TM recap

• DFA with (infinite) tape.

• One move:   read, write, move, change state.



Transition Function

δ: Q x Γ → Q  x Γ x {L, R, S} 

current
state

symbol
scanned

new
state

symbol
to write

direction to
move on tape 

δ(q,a) = (p, b, L) 
from state q, on reading a:

go to state p

write b
move head Left  



Example/Refresher

TM that adds two unary numbers.

7 + 4:          $0000000#0000     initial tape contents

= 11:            $00000000000     final tape contents

Strategy?

• go right to first blank, turning # into 0

• back up one cell, erase 0

• return to first cell



Example/Refresher

7 + 4:          $0000000#0000     initial tape contents

Strategy?
• go right to first blank, turning # into 0

δ(q0,0) = (q0,0,R)   
δ(q0,#) = (q0,0,R) 

• back up one cell, erase 0
δ(q0,B) = (q1,B,L) 
δ(q1,0) = (q2,B,L) 

• return to first cell
δ(q2,0) = (q2,0,L)
δ(q2,$) = (qhalt,$,R)  



TM programming tricks

• checking off symbols

• shifting over

• using finite control memory

• subroutine calls

• 2-way infinite tape

• multiple tracks

• multiple tapes

TM “extensions”



Special purpose machines?

• Different DFA for different languages (duh)

• Different TMs for different languages, 
functions.

• Early computer programming was no different



Von Neumann Architecture

• stored-program computer

– programs can be data!

– program-as-data determines 
subcircuits to employ

• fetch-decode-execute cycle

• hence, one computer can 
behave like any

http://idiomzero.blogspot.com/2010/07/8-anecdotes-about-john-von-neumann.html



Original Idea was due to Turing

“I know that in or about 1943 or '44 von Neumann was well 
aware of the fundamental importance of Turing's paper 
of 1936 ... Von Neumann introduced me to that paper 
and at his urging I studied it with care. Many people have 
acclaimed von Neumann as the "father of the computer" 
(in a modern sense of the term) but I am sure that he 
would never have made that mistake himself. He might 
well be called the midwife, perhaps, but he firmly 
emphasized to me, and to others I am sure, that the 
fundamental conception is owing to Turing— in so far as 
not anticipated by Babbage ... “

- Stan Frankel – Los Alamos



Universal TM

• A single TM Mu that can compute anything 
computable!

• Takes as input

– the description of some other TM M

– data w for M to run on

• Outputs

– the results of running M(w)

Need to make precise what the description of a TM is



Coding of TMs

• Show how to represent every TM as a natural 
number

• Lemma:  If L over alphabet {0,1} is accepted by 
some TM M, then there is a one-tape TM M’ that 
accepts L, such that
– Γ = {0,1,B}
– states numbered 1, ..., k
– q1 is the unique start state
– q2 is the unique halt/accept state
– q3 is the unique halt/reject state

• So, to represent a TM, we need only list its set of 
transitions – everything else is implicit by above



Listing Transition

• Use the following order:

δ(q1,0), δ(q1,1), δ(q1,B), δ(q2,0), δ(q2,1), 
δ(q2,B),...

... δ(qk,0), δ(qk,1), δ(qk,B).

• Use the following encoding:

111 t1  11 t2  11 t3  11 ... 11 t3k 111

where ti is the encoding of transition i as given on 
the next slide. 



Encoding a transition

Recall transition looks like  δ(q,a) = (p, b, L)

So, encode as 

<state> 1 <input> 1 <new state> 1 <new-symbol> 1 <direction>

where  

• state qi represented by 0i

• 0, 1, B represented by  0, 00, 000

• L, R, S represented by 0, 00, 000

δ(q3,1) = (q4, 0, R) represented by   0001001000010100 

q3 1 q4 0 R



Typical TM code:

• Begins, ends with 111

• Transitions separated by 11

• Fields within transition separated by 1

• Individual fields represented by 0s

11101010000100100110100100000101011.....11.......11.......111 



TMs are (binary) numbers

• Every TM is encoded by a unique element of N

• Convention:  elements of N that do not 
correspond to any TM encoding represent the 
“null TM” that accepts nothing.

• Thus, every TM is a number, and vice versa

• Let <M> mean the number that encodes M

• Conversely, let Mn be the TM with encoding n.



Universal TM Mu

Construct a TM  Mu such that

L(Mu) = { <M> # w | M accepts w} 

Thus, Mu is a stored-program computer.

It reads a program <M> and executes it on data w

Mu simulates the run of M on w

A  single TM captures the notion of “computable” !!



How Mu works

3 tapes

• Tape 1:  holds input M and w; never changes

• Tape 2:  simulates M’s single tape

• Tape 3:  holds M’s current state

1 1 1 t1 1 1 t2 1 1 ... t3k 1 1 1 # w

Input M Input w



Universal TM  Mu

Phase 1:  Check if <M> is a valid TM on tape 1
– No four 1’s in a row

– Three initial, ending 1’s

– substring 110i10j1 doesn’t appear twice

– appropriate number of 0’s between 1’s in 
transition codes:  11000010100000100001...

(0000 does not encode a 0,1,or B to write)

– could check that transitions are in right order, and 
form a complete set (but not necessary)

– etc.

If not valid, then halt and reject



Phase 2:  Set up

– copy w to tape 2, with head scanning first symbol

– write 0 on tape 3 indicating M is in start state q1

11101010000100100110100100000101011......111 # 100110

$100110

$0

Tape 1

Tape 2

Current contents of M’s tape

Current state of M

Tape 3

Code for M

If at any time, Tape 3 holds 00  (or 000), then halt and accept (or reject)



Phase 3:  Repeatedly simulate steps of M

111010100001001001101001000001010011......111 # 100110

$100110

$0

Tape 1

Tape 2

Current contents of M’s tape

Current state of M 

Tape 3

Code for M

If tape 3 holds 0i and tape 2 is scanning 1, then search for
substring  110i1001 on tape 1 

copy new state 00000 to tape 3

write a 0 under tape 2’s head

move tape 2 head to the right
what to do next

Where in code is next transition?



Phase 3:  After the single move

111010100001001001101001000001010011......111 # 100110

$000110

$00000

Tape 1

Tape 2

Current contents of M’s tape

Current state of M 

Tape 3

Code for M

copy new state 00000 to tape 3

write a 0 under tape 2’s head

move tape 2 head to the right

Check if 00 or 000 is on tape 3;  if so, halt and accept or reject

Otherwise, simulate the next move by searching for pattern.
In this example, the next pattern = 1100000101



Exercise

• Show how UTM on input <M>#w#t where t is 
a binary number simulates M on w for t time 
steps

• Is quite useful in simulating 

– Multiple machines in parallel

– Dovetailing

– Etc



Towards “real” computers: RAMs

Random Access Machine:

• finite number of arithmetic registers

• infinite number of memory locations

• instruction set (next page)

• program instructions written in continuous 
block of memory starting at location 1 and all 
registers set to 0.



RAM instruction set
Instruction Meaning

Add X, Y Add contents of register X and Y, and place 
result in register X

LOADC X, num Place constant num in register X

LOAD X, M Put contents of memory loc M into register X

LOADI X, M Indirect addressing:  put value(value(M)) into 
register X

STORE X, M Copy contents of reg X into mem location M

JUMP X, M If register X = 0, then next instruction is at 
memory location M (otherwise, next 
instruction is the one following the current 
one, as usual)

HALT Halt (duh)



TMs can simulate RAMs

• Can write a “TM-interpreter” of RAM code 
Thus, no more TM programming.

• Actual simulation has low overhead (though 
memory is not random-access).



TM tapes
• Instruction-location tape

– stores memory location where next instruction is

– initially contains only “1”

• Register tape

– stores register numbers and their contents, as 
follows:   # <reg-num> # <contents> # .. etc.

– Example:  suppose R1 has 11, and R4 has 101, and 
all other registers are empty.   Then register tape:

$ # 1 , 1 1 # 1 0 0 , 1 0 1 # . . .



TM tapes
• Memory tape – similar to register tape, but 

can hold numbers, OR instructions:

numbers:   # <mem-location> , <value> # ...

instructions:   

example: mem location 101 holds ADD 3,6

# 1 0 1 , A
D
D

, 1 1 , 1 1 0 # . . .

single symbol

• 5 work tapes



TM setup

• Blank register tape

• Memory tape holds RAM program, starting at 
memory location 1.  No other data stored. 

• 1 on instruction-location tape



TM step overview

(many TM steps for each RAM step)

• Read instruction-location tape

• search memory tape for the instruction

• execute the instruction, changing register and 
memory tapes as needed

• update the location-instruction tape

In other words, it goes through a fetch-decode-execute cycle



Example

• Suppose instruction location tape holds only:

$ 1 0 1

• Scan memory tape, looking for “# 1 0 1 ,” 
Suppose it finds

. . # 1 0 1 , A
D
D

, 1 1 , 1 1 0 #

• It finds “ADD” following “,” and switches to 
special state qadd to handle the addition



Example (cont.)

# 1 0 1 , A
D
D

, 1 1 , 1 1 0 #

• first argument is in register 11 so search 
register tape for:

qadd

# 1 1 , <bitstring>

• then copy <bitstring> to worktape 1

• similarly, search for, find, place value of 
register 110 onto worktape 2



Example (cont.)

• Now go to subroutine to add worktape 1 + 
worktape 2, place results on worktape 3.

• Result must go back into register 11

• Search register tape again for 

# 1 1 , <bitstring>

• Replace <bitstring> with new value copied 
from worktape 3, shifting as necessary

• Add 1 to instruction-location tape



RAM simulation

• MANY details left out

• Other types of instructions are similar

• Number of steps to simulate RAM?

• Delicate issue.... does RAM actually have 
constant-time access to infinite memory?

• Can show (beyond this course) for 
“reasonable” time model on a RAM, if T(n) 
steps are required, then on a TM, only T(n)2 

steps.  (T(n)3 if RAM has mult. and div.)



Church-Turing thesis
• TMs capture notion of “computable”

• Evidence
– RAM computer

– general recursive functions (Gödel & Herbrand)
• constant/projection/successor/composition/recursion

– λ-calculus (Church) for defining functions (CS 421)

– general string-rewriting-system
• unrestricted grammar, productions of form α → β for any α

and β

– attempts to extend TMs

All give you exactly the TM-computable functions



Undecidability

• Can a Turing Machine Compute anything? 

• Some problems are undecidable!

• E.g. Halting Problem 

No



Halting Problem

• Given a program M and a string w, does M 
halt when started on w?

No Algorithm to Solve This Problem

• Any program can be computed by a Turing 
machine M. 

𝐿𝐻𝑎𝑙𝑡 = 𝑀 #𝑤 Turing Machine 𝑀 halts on input 𝑤}



Halting Problem
𝐿𝐻𝑎𝑙𝑡 = < 𝑀 > #𝑤 Turing Machine 𝑀 halts on input 𝑤}

• Theorem: 𝐿𝐻𝑎𝑙𝑡 is not recursive i.e. undecidable.

• Recursive Languages   (also called “decidable”)

= {L | there is a TM M’ that halts for all w in Σ* 

and such that  L(M’) = L }



Halting Problem
𝐿𝐻𝑎𝑙𝑡 = < 𝑀 > #𝑤 Turing Machine 𝑀 halts on input 𝑤}

• Theorem: 𝐿𝐻𝑎𝑙𝑡 is not recursive i.e. undecidable.

• Proof: By Contradiction

Suppose there is some Turing Machine M0 that halts for all x in Σ* 

and accepts if x in 𝐿𝐻𝑎𝑙𝑡

Counterexample: <Mbad>#wbad

There is some program (TM) Mbad and string wbad such that M0

accepts <Mbad>#wbad even if Mbad does not halt on wbad and rejects 
<Mbad>#wbad even if Mbad halts on wbad .



Halting Problem
𝐿𝐻𝑎𝑙𝑡 = < 𝑀 > #𝑤 Turing Machine 𝑀 halts on input 𝑤}

• Theorem: 𝐿𝐻𝑎𝑙𝑡 is not recursive i.e. undecidable.

• Proof: By Contradiction

Mbad :

Takes input <M>.

Runs M0 on input <M>#<M>

If M0 accepts,

go to infinite loop

else

halt.

wbad : <Mbad>

Case 1: M0 accepts <Mbad>#wbad i.e. halts

Mbad on input <Mbad>  goes to infinite loop

→M0 is wrong!

Case 2: M0  rejects <Mbad>#wbad i.e. doesn’t halt

Mbad on input <Mbad>  halts →M0 is wrong!


