
Algorithms & Models of Computation
CS/ECE 374, Spring 2019

Reductions, Recursion and
Divide and Conquer
Lecture 10
Tuesday, February 19, 2019

LATEXed: February 19, 2019 16:21

Chan, Har-Peled, Hassanieh (UIUC) CS374 1 Spring 2019 1 / 61

Part I

Brief Intro to Algorithm Design and
Analysis

Chan, Har-Peled, Hassanieh (UIUC) CS374 2 Spring 2019 2 / 61

Algorithms and Computing

1 Algorithm solves a specific problem.

2 Steps/instructions of an algorithm are simple/primitive and can
be executed mechanically.

3 Algorithm has a finite description; same description for all
instances of the problem

4 Algorithm implicitly may have state/memory

A computer is a device that

1 implements the primitive instructions

2 allows for an automated implementation of the entire algorithm
by keeping track of state

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 61

Models of Computation vs Computers

1 Model of Computation: an idealized mathematical construct
that describes the primitive instructions and other details

2 Computer: an actual physical device that implements a very
specific model of computation

In this course: design algorithms in a high-level model of
computation.

Question: What model of computation will we use to design
algorithms?

The standard programming model that you are used to in
programming languages such as Java/C++. We have already seen
the Turing Machine model.

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 61

Models of Computation vs Computers

1 Model of Computation: an idealized mathematical construct
that describes the primitive instructions and other details

2 Computer: an actual physical device that implements a very
specific model of computation

In this course: design algorithms in a high-level model of
computation.

Question: What model of computation will we use to design
algorithms?

The standard programming model that you are used to in
programming languages such as Java/C++. We have already seen
the Turing Machine model.

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 61

Unit-Cost RAM Model

Informal description:

1 Basic data type is an integer number

2 Numbers in input fit in a word

3 Arithmetic/comparison operations on words take constant time

4 Arrays allow random access (constant time to access A[i])
5 Pointer based data structures via storing addresses in a word

Chan, Har-Peled, Hassanieh (UIUC) CS374 5 Spring 2019 5 / 61

Example

Sorting: input is an array of n numbers

1 input size is n (ignore the bits in each number),

2 comparing two numbers takes O(1) time,

3 random access to array elements,

4 addition of indices takes constant time,

5 basic arithmetic operations take constant time,

6 reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):

1 bitwise operations (and, or, xor, shift, etc).

2 floor function.

3 limit word size (usually assume unbounded word size).

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 61

Caveats of RAM Model

Unit-Cost RAM model is applicable in wide variety of settings in
practice. However it is not a proper model in several important
situations so one has to be careful.

1 For some problems such as basic arithmetic computation,
unit-cost model makes no sense. Examples: multiplication of
two n-digit numbers, primality etc.

2 Input data is very large and does not satisfy the assumptions
that individual numbers fit into a word or that total memory is
bounded by 2k where k is word length.

3 Assumptions valid only for certain type of algorithms that do not
create large numbers from initial data. For example,
exponentiation creates very big numbers from initial numbers.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 61

Models used in class

In this course when we design algorithms:

1 Assume unit-cost RAM by default.

2 We will explicitly point out where unit-cost RAM is not
applicable for the problem at hand.

3 Turing Machines (or some high-level version of it) will be the
non-cheating model that we will fall back upon when tricky
issues come up.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 61

What is an algorithmic problem?

Simplest and robust definition: An algorithmic problem is simply
to compute a function f : Σ∗ → Σ∗ over strings of a finite alphabet.

Algorithm A solves f if for all input strings w , A outputs f (w).

Typically we are interested in functions f : D → R where D ⊆ Σ∗

is the domain of f and where R ⊆ Σ∗ is the range of f .

We say that w ∈ D is an instance of the problem. Implicit
assumption is that the algorithm, given an arbitrary string w , can tell
whether w ∈ D or not. Parsing problem! The size of the input w
is simply the length |w |.

The domain D depends on what representation is used. Can be
lead to formally different algorithmic problems.
Chan, Har-Peled, Hassanieh (UIUC) CS374 9 Spring 2019 9 / 61

Types of Problems

We will broadly see three types of problems.

1 Decision Problem: Is the input a YES or NO input?
Example: Given graph G , nodes s, t, is there a path from s to t
in G?
Example: Given a CFG grammar G and string w , is w ∈ L(G)?

2 Search Problem: Find a solution if input is a YES input.
Example: Given graph G , nodes s, t, find an s-t path.

3 Optimization Problem: Find a best solution among all solutions
for the input.
Example: Given graph G , nodes s, t, find a shortest s-t path.

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 61

Analysis of Algorithms

Given a problem P and an algorithm A for P we want to know:

Does A correctly solve problem P?

What is the asymptotic worst-case running time of A?

What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in O(f (n)) time if:

“for all n and for all inputs I of size n, A on input I terminates after
O(f (n)) primitive steps.”

Chan, Har-Peled, Hassanieh (UIUC) CS374 11 Spring 2019 11 / 61

Algorithmic Techniques

Reduction to known problem/algorithm

Recursion, divide-and-conquer, dynamic programming

Graph algorithms to use as basic reductions

Greedy

Some advanced techniques not covered in this class:

Combinatorial optimization

Linear and Convex Programming, more generally continuous
optimization method

Advanced data structure

Randomization

Many specialized areas

Chan, Har-Peled, Hassanieh (UIUC) CS374 12 Spring 2019 12 / 61

Part II

What is a good algorithm?

Chan, Har-Peled, Hassanieh (UIUC) CS374 13 Spring 2019 13 / 61

What is a good algorithm?
Running time...

Chan, Har-Peled, Hassanieh (UIUC) CS374 14 Spring 2019 14 / 61

What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops

5 0 secs 0 secs 0 secs 0 secs
20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never

Chan, Har-Peled, Hassanieh (UIUC) CS374 15 Spring 2019 15 / 61

Part III

Reductions and Recursion

Chan, Har-Peled, Hassanieh (UIUC) CS374 16 Spring 2019 16 / 61

Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 61

Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 61

Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until he turns blue, and then shoot him with
the blue elephant gun.

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 61

Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until he turns blue, and then shoot him with
the blue elephant gun.

Q: How do you hunt a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants.

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 61

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1..n])
for i = 1 to n − 1 do

for j = i + 1 to n do
if (A[i] = A[j])

return YES

return NO

Running time: O(n2)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 61

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1..n])
for i = 1 to n − 1 do

for j = i + 1 to n do
if (A[i] = A[j])

return YES

return NO

Running time: O(n2)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 61

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1..n])
for i = 1 to n − 1 do

for j = i + 1 to n do
if (A[i] = A[j])

return YES

return NO

Running time:

O(n2)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 61

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1..n])
for i = 1 to n − 1 do

for j = i + 1 to n do
if (A[i] = A[j])

return YES

return NO

Running time: O(n2)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 61

Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be
“sorted”. Can also consider hashing but outside scope of current
course.

Chan, Har-Peled, Hassanieh (UIUC) CS374 19 Spring 2019 19 / 61

Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be
“sorted”. Can also consider hashing but outside scope of current
course.

Chan, Har-Peled, Hassanieh (UIUC) CS374 19 Spring 2019 19 / 61

Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be
“sorted”. Can also consider hashing but outside scope of current
course.

Chan, Har-Peled, Hassanieh (UIUC) CS374 19 Spring 2019 19 / 61

Two sides of Reductions

Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

1 An O(n log n) time algorithm for Sorting implies an
O(n log n) time algorithm for Distinct Elements problem.

2 If there is no o(n log n) time algorithm for Distinct Elements
problem then there is no o(n log n) time algorithm for Sorting.

Chan, Har-Peled, Hassanieh (UIUC) CS374 20 Spring 2019 20 / 61

Two sides of Reductions

Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

1 An O(n log n) time algorithm for Sorting implies an
O(n log n) time algorithm for Distinct Elements problem.

2 If there is no o(n log n) time algorithm for Distinct Elements
problem then there is no o(n log n) time algorithm for Sorting.

Chan, Har-Peled, Hassanieh (UIUC) CS374 20 Spring 2019 20 / 61

Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

A

B

C

DE

F

Some independent sets in graph above:

Chan, Har-Peled, Hassanieh (UIUC) CS374 21 Spring 2019 21 / 61

Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F

Chan, Har-Peled, Hassanieh (UIUC) CS374 22 Spring 2019 22 / 61

Maximum Weight Independent Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

Chan, Har-Peled, Hassanieh (UIUC) CS374 23 Spring 2019 23 / 61

Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights
(or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be
scheduled!

2 1 2 3
1 4 10

10 1 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 24 Spring 2019 24 / 61

Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights
(or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be
scheduled!

2 1 2 3
1 4 10

10 1 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 24 Spring 2019 24 / 61

Reduction from Interval Scheduling to MIS

Question: Can you reduce Weighted Interval Scheduling to Max
Weight Independent Set Problem?

Chan, Har-Peled, Hassanieh (UIUC) CS374 25 Spring 2019 25 / 61

Weighted Circular Arc Scheduling

Input A set of arcs on a circle, each arc has a weight (or
profit).

Goal Find a maximum weight subset of arcs that do not
overlap.

Chan, Har-Peled, Hassanieh (UIUC) CS374 26 Spring 2019 26 / 61

Reductions

Question: Can you reduce Weighted Interval Scheduling to
Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to
Weighted Interval Scheduling? Yes!

MaxWeightIndependentArcs(arcs C)
cur-max = 0

for each arc C ∈ C do
Remove C and all arcs overlapping with C
wC = wt of opt. solution in resulting Interval problem

wC = wC + wt(C)
cur-max = max{cur-max,wC}

end for
return cur-max

n calls to the sub-routine for interval scheduling

Chan, Har-Peled, Hassanieh (UIUC) CS374 27 Spring 2019 27 / 61

Reductions

Question: Can you reduce Weighted Interval Scheduling to
Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to
Weighted Interval Scheduling?

Yes!

MaxWeightIndependentArcs(arcs C)
cur-max = 0

for each arc C ∈ C do
Remove C and all arcs overlapping with C
wC = wt of opt. solution in resulting Interval problem

wC = wC + wt(C)
cur-max = max{cur-max,wC}

end for
return cur-max

n calls to the sub-routine for interval scheduling

Chan, Har-Peled, Hassanieh (UIUC) CS374 27 Spring 2019 27 / 61

Reductions

Question: Can you reduce Weighted Interval Scheduling to
Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to
Weighted Interval Scheduling? Yes!

MaxWeightIndependentArcs(arcs C)
cur-max = 0

for each arc C ∈ C do
Remove C and all arcs overlapping with C
wC = wt of opt. solution in resulting Interval problem

wC = wC + wt(C)
cur-max = max{cur-max,wC}

end for
return cur-max

n calls to the sub-routine for interval scheduling

Chan, Har-Peled, Hassanieh (UIUC) CS374 27 Spring 2019 27 / 61

Reductions

Question: Can you reduce Weighted Interval Scheduling to
Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to
Weighted Interval Scheduling? Yes!

MaxWeightIndependentArcs(arcs C)
cur-max = 0

for each arc C ∈ C do
Remove C and all arcs overlapping with C
wC = wt of opt. solution in resulting Interval problem

wC = wC + wt(C)
cur-max = max{cur-max,wC}

end for
return cur-max

n calls to the sub-routine for interval scheduling

Chan, Har-Peled, Hassanieh (UIUC) CS374 27 Spring 2019 27 / 61

Illustration

C

Chan, Har-Peled, Hassanieh (UIUC) CS374 28 Spring 2019 28 / 61

Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases

Chan, Har-Peled, Hassanieh (UIUC) CS374 29 Spring 2019 29 / 61

Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases

Chan, Har-Peled, Hassanieh (UIUC) CS374 29 Spring 2019 29 / 61

Recursion

1 Recursion is a very powerful and fundamental technique
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30 / 61

Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Chan, Har-Peled, Hassanieh (UIUC) CS374 31 Spring 2019 31 / 61

Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3

Chan, Har-Peled, Hassanieh (UIUC) CS374 32 Spring 2019 32 / 61

Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 61

Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 61

Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 61

Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2− 1) = 2n − 1

Chan, Har-Peled, Hassanieh (UIUC) CS374 34 Spring 2019 34 / 61

Part IV

Divide and Conquer

Chan, Har-Peled, Hassanieh (UIUC) CS374 35 Spring 2019 35 / 61

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach
1 Break problem instance into smaller instances - divide step

2 Recursively solve problem on smaller instances

3 Combine solutions to smaller instances to obtain a solution to
the original instance - conquer step

Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion that
it deserves its own treatment.

Chan, Har-Peled, Hassanieh (UIUC) CS374 36 Spring 2019 36 / 61

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach
1 Break problem instance into smaller instances - divide step

2 Recursively solve problem on smaller instances

3 Combine solutions to smaller instances to obtain a solution to
the original instance - conquer step

Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion that
it deserves its own treatment.

Chan, Har-Peled, Hassanieh (UIUC) CS374 36 Spring 2019 36 / 61

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach
1 Break problem instance into smaller instances - divide step

2 Recursively solve problem on smaller instances

3 Combine solutions to smaller instances to obtain a solution to
the original instance - conquer step

Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion that
it deserves its own treatment.

Chan, Har-Peled, Hassanieh (UIUC) CS374 36 Spring 2019 36 / 61

Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order

Chan, Har-Peled, Hassanieh (UIUC) CS374 37 Spring 2019 37 / 61

Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

Chan, Har-Peled, Hassanieh (UIUC) CS374 38 Spring 2019 38 / 61

Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = bn/2c

A L G O R I T H M S

Chan, Har-Peled, Hassanieh (UIUC) CS374 38 Spring 2019 38 / 61

Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = bn/2c

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

Chan, Har-Peled, Hassanieh (UIUC) CS374 38 Spring 2019 38 / 61

Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = bn/2c

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

4 Merge the sorted arrays

A G H I L M O R S T
Chan, Har-Peled, Hassanieh (UIUC) CS374 38 Spring 2019 38 / 61

Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = bn/2c

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

4 Merge the sorted arrays

A G H I L M O R S T
Chan, Har-Peled, Hassanieh (UIUC) CS374 38 Spring 2019 38 / 61

Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A

G H I L M O R S T

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 61

Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G

H I L M O R S T

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 61

Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H

I L M O R S T

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 61

Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I

L M O R S T

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 61

Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 61

Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

3 Merge two arrays using only constantly more extra space
(in-place merge sort): doable but complicated and typically
impractical.

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 61

Formal Code

Algorithms Lecture �: Recursion [Fa’��]

M����S���(A[1 .. n]):
if n> 1

m bn/2c
M����S���(A[1 .. m])
M����S���(A[m+ 1 .. n])
M����(A[1 .. n], m)

M����(A[1 .. n], m):
i 1; j m+ 1
for k 1 to n

if j > n
B[k] A[i]; i i + 1

else if i > m
B[k] A[j]; j j + 1

else if A[i]< A[j]
B[k] A[i]; i i + 1

else
B[k] A[j]; j j + 1

for k 1 to n
A[k] B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
M���� subroutine then to the top-level M�������� algorithm.

• We prove M���� is correct by induction on n� k + 1, which is the total size of the two
sorted subarrays A[i .. m] and A[j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

– If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

– If i  m and j > n, the subarray A[j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k] A[i] is correct. The inductive hypothesis implies that the remaining subarrays
A[i + 1 .. m] and A[j .. n] are correctly merged into B[k+ 1 .. n].

– Similarly, if i > m and j  n, the assignment B[k] A[j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the M���� algorithm correctly merges—the remaining subarrays A[i .. m] and
A[j + 1 .. n] into B[k+ 1 .. n].

– If i  m and j  n and A[i]< A[j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

– Finally, if i  m and j  n and A[i] � A[j], then the smallest remaining element is
A[j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

• Now we prove M����S��� correct by induction; there are two cases to consider. Yes, two.

– If n 1, the algorithm correctly does nothing.

– Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis
implies that our algorithm correctly sorts—the two smaller subarrays A[1 .. m] and
A[m+1 .. n], after which they are correctly M����d into a single sorted array (by the
previous argument).

What’s the running time? Because the M����S��� algorithm is recursive, its running
time will be expressed by a recurrence. M���� clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
M����S���:

T (n) = T
�dn/2e�+ T
�bn/2c�+O(n).

�

Chan, Har-Peled, Hassanieh (UIUC) CS374 40 Spring 2019 40 / 61

Proving Correctness

Obvious way to prove correctness of recursive algorithm:

induction!

Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

How do we prove that Merge is correct? Also by induction!

One way is to rewrite Merge into a recursive version.

For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:

B[1..k] contains the smallest k elements of A correctly sorted.

B[1..k] contains the elements of A[1..(i − 1)] and
A[(m + 1)..(j − 1)].

No element of A is modified.

Chan, Har-Peled, Hassanieh (UIUC) CS374 41 Spring 2019 41 / 61

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

How do we prove that Merge is correct?

Also by induction!

One way is to rewrite Merge into a recursive version.

For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:

B[1..k] contains the smallest k elements of A correctly sorted.

B[1..k] contains the elements of A[1..(i − 1)] and
A[(m + 1)..(j − 1)].

No element of A is modified.

Chan, Har-Peled, Hassanieh (UIUC) CS374 41 Spring 2019 41 / 61

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

How do we prove that Merge is correct? Also by induction!

One way is to rewrite Merge into a recursive version.

For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:

B[1..k] contains the smallest k elements of A correctly sorted.

B[1..k] contains the elements of A[1..(i − 1)] and
A[(m + 1)..(j − 1)].

No element of A is modified.

Chan, Har-Peled, Hassanieh (UIUC) CS374 41 Spring 2019 41 / 61

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

How do we prove that Merge is correct? Also by induction!

One way is to rewrite Merge into a recursive version.

For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:

B[1..k] contains the smallest k elements of A correctly sorted.

B[1..k] contains the elements of A[1..(i − 1)] and
A[(m + 1)..(j − 1)].

No element of A is modified.
Chan, Har-Peled, Hassanieh (UIUC) CS374 41 Spring 2019 41 / 61

Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T (n) = Θ(f (n)).

1 T (n) = O(f (n)) - upper bound

2 T (n) = Ω(f (n)) - lower bound

Chan, Har-Peled, Hassanieh (UIUC) CS374 42 Spring 2019 42 / 61

Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T (n) = Θ(f (n)).

1 T (n) = O(f (n)) - upper bound

2 T (n) = Ω(f (n)) - lower bound

Chan, Har-Peled, Hassanieh (UIUC) CS374 42 Spring 2019 42 / 61

Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T (n) = Θ(f (n)).

1 T (n) = O(f (n)) - upper bound

2 T (n) = Ω(f (n)) - lower bound

Chan, Har-Peled, Hassanieh (UIUC) CS374 42 Spring 2019 42 / 61

Solving Recurrences: Some Techniques

1 Know some basic math: geometric series, logarithms,
exponentials, elementary calculus

2 Expand the recurrence and spot a pattern and use simple math

3 Recursion tree method — imagine the computation as a tree

4 Guess and verify — useful for proving upper and lower bounds
even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible,
but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!

Review notes on recurrence solving.

Chan, Har-Peled, Hassanieh (UIUC) CS374 43 Spring 2019 43 / 61

Solving Recurrences: Some Techniques

1 Know some basic math: geometric series, logarithms,
exponentials, elementary calculus

2 Expand the recurrence and spot a pattern and use simple math

3 Recursion tree method — imagine the computation as a tree

4 Guess and verify — useful for proving upper and lower bounds
even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible,
but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!

Review notes on recurrence solving.

Chan, Har-Peled, Hassanieh (UIUC) CS374 43 Spring 2019 43 / 61

Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

Chan, Har-Peled, Hassanieh (UIUC) CS374 44 Spring 2019 44 / 61

Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern.

At the i th level total work is cn

.

Chan, Har-Peled, Hassanieh (UIUC) CS374 44 Spring 2019 44 / 61

Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.

Chan, Har-Peled, Hassanieh (UIUC) CS374 44 Spring 2019 44 / 61

Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.
3 Sum over all levels.

The number of levels is log n. So total is
cn log n = O(n log n).

Chan, Har-Peled, Hassanieh (UIUC) CS374 44 Spring 2019 44 / 61

Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.
3 Sum over all levels. The number of levels is log n. So total is

cn log n = O(n log n).Chan, Har-Peled, Hassanieh (UIUC) CS374 44 Spring 2019 44 / 61

Recursion Trees
An illustrated example...

n

n/2 n/2

n/4 n/4 n/4 n/4

Chan, Har-Peled, Hassanieh (UIUC) CS374 45 Spring 2019 45 / 61

Recursion Trees
An illustrated example...

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

Chan, Har-Peled, Hassanieh (UIUC) CS374 45 Spring 2019 45 / 61

Recursion Trees
An illustrated example...

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

Chan, Har-Peled, Hassanieh (UIUC) CS374 45 Spring 2019 45 / 61

Recursion Trees
An illustrated example...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n





= cn

= cn

= cn

= cn
...

Chan, Har-Peled, Hassanieh (UIUC) CS374 45 Spring 2019 45 / 61

Recursion Trees
An illustrated example...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n





= cn

= cn

= cn

= cn
...

+

+

= cn log n = O(n log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 45 Spring 2019 45 / 61

Recursion Trees

Chan, Har-Peled, Hassanieh (UIUC) CS374 46 Spring 2019 46 / 61

Merge Sort Variant

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can
we do better by splitting into more than 2 arrays? Say k arrays of
size n/k each?

Chan, Har-Peled, Hassanieh (UIUC) CS374 47 Spring 2019 47 / 61

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Chan, Har-Peled, Hassanieh (UIUC) CS374 48 Spring 2019 48 / 61

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Chan, Har-Peled, Hassanieh (UIUC) CS374 48 Spring 2019 48 / 61

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Chan, Har-Peled, Hassanieh (UIUC) CS374 48 Spring 2019 48 / 61

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Chan, Har-Peled, Hassanieh (UIUC) CS374 48 Spring 2019 48 / 61

Quick Sort: Example

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

Chan, Har-Peled, Hassanieh (UIUC) CS374 49 Spring 2019 49 / 61

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 50 Spring 2019 50 / 61

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

2 If k = dn/2e then T (n) =
T (dn/2e − 1) + T (bn/2c) + O(n) ≤ 2T (n/2) + O(n).
Then, T (n) = O(n log n).

Chan, Har-Peled, Hassanieh (UIUC) CS374 50 Spring 2019 50 / 61

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

2 If k = dn/2e then T (n) =
T (dn/2e − 1) + T (bn/2c) + O(n) ≤ 2T (n/2) + O(n).
Then, T (n) = O(n log n).

1 Theoretically, median can be found in linear time.

Chan, Har-Peled, Hassanieh (UIUC) CS374 50 Spring 2019 50 / 61

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

2 If k = dn/2e then T (n) =
T (dn/2e − 1) + T (bn/2c) + O(n) ≤ 2T (n/2) + O(n).
Then, T (n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T (n) = max
1≤k≤n

(T (k − 1) + T (n − k) + O(n))

In the worst case T (n) = T (n − 1) + O(n), which means
T (n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Chan, Har-Peled, Hassanieh (UIUC) CS374 50 Spring 2019 50 / 61

Part V

Binary Search

Chan, Har-Peled, Hassanieh (UIUC) CS374 51 Spring 2019 51 / 61

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch(A[a..b], x):
if (b − a < 0) return NO

mid = A[b(a + b)/2c]
if (x = mid) return YES

if (x < mid)
return BinarySearch(A[a..b(a + b)/2c − 1], x)

else
return BinarySearch(A[b(a + b)/2c+ 1..b],x)

Analysis: T (n) = T (bn/2c) + O(1). T (n) = O(log n).
Observation: After k steps, size of array left is n/2k

Chan, Har-Peled, Hassanieh (UIUC) CS374 52 Spring 2019 52 / 61

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch(A[a..b], x):
if (b − a < 0) return NO

mid = A[b(a + b)/2c]
if (x = mid) return YES

if (x < mid)
return BinarySearch(A[a..b(a + b)/2c − 1], x)

else
return BinarySearch(A[b(a + b)/2c+ 1..b],x)

Analysis: T (n) = T (bn/2c) + O(1). T (n) = O(log n).
Observation: After k steps, size of array left is n/2k

Chan, Har-Peled, Hassanieh (UIUC) CS374 52 Spring 2019 52 / 61

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch(A[a..b], x):
if (b − a < 0) return NO

mid = A[b(a + b)/2c]
if (x = mid) return YES

if (x < mid)
return BinarySearch(A[a..b(a + b)/2c − 1], x)

else
return BinarySearch(A[b(a + b)/2c+ 1..b],x)

Analysis: T (n) = T (bn/2c) + O(1). T (n) = O(log n).
Observation: After k steps, size of array left is n/2k

Chan, Har-Peled, Hassanieh (UIUC) CS374 52 Spring 2019 52 / 61

Another common use of binary search

1 Optimization version: find solution of best (say minimum) value

2 Decision version: is there a solution of value at most a given
value v?

Reduce optimization to decision (may be easier to think about):

1 Given instance I compute upper bound U(I) on best value

2 Compute lower bound L(I) on best value

3 Do binary search on interval [L(I),U(I)] using decision version
as black box

4 O(log(U(I)− L(I))) calls to decision version if U(I), L(I) are
integers

Chan, Har-Peled, Hassanieh (UIUC) CS374 53 Spring 2019 53 / 61

Another common use of binary search

1 Optimization version: find solution of best (say minimum) value

2 Decision version: is there a solution of value at most a given
value v?

Reduce optimization to decision (may be easier to think about):

1 Given instance I compute upper bound U(I) on best value

2 Compute lower bound L(I) on best value

3 Do binary search on interval [L(I),U(I)] using decision version
as black box

4 O(log(U(I)− L(I))) calls to decision version if U(I), L(I) are
integers

Chan, Har-Peled, Hassanieh (UIUC) CS374 53 Spring 2019 53 / 61

Example

1 Problem: shortest paths in a graph.

2 Decision version: given G with non-negative integer edge
lengths, nodes s, t and bound B, is there an s-t path in G of
length at most B?

3 Optimization version: find the length of a shortest path between
s and t in G .

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

Chan, Har-Peled, Hassanieh (UIUC) CS374 54 Spring 2019 54 / 61

Example continued

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

1 Let U be maximum edge length in G .

2 Minimum edge length is L.

3 s-t shortest path length is at most (n − 1)U and at least L.

4 Apply binary search on the interval [L, (n − 1)U] via the
algorithm for the decision problem.

5 O(log((n − 1)U − L)) calls to the decision problem algorithm
sufficient. Polynomial in input size.

Chan, Har-Peled, Hassanieh (UIUC) CS374 55 Spring 2019 55 / 61

Part VI

Solving Recurrences

Chan, Har-Peled, Hassanieh (UIUC) CS374 56 Spring 2019 56 / 61

Solving Recurrences

Two general methods:
1 Recursion tree method: need to do sums

1 elementary methods, geometric series
2 integration

2 Guess and Verify
1 guessing involves intuition, experience and trial & error
2 verification is via induction

Chan, Har-Peled, Hassanieh (UIUC) CS374 57 Spring 2019 57 / 61

Recurrence: Example I

1 Consider T (n) = 2T (n/2) + n/ log n for n > 2, T (2) = 1.

2 Construct recursion tree, and observe pattern. i th level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i / log n
2i .

3 Summing over all levels

T (n) =

log n−1∑

i=0

2i

[
(n/2i)

log(n/2i)

]

=

log n−1∑

i=0

n
log n − i

= n
log n∑

j=1

1

j
= nHlog n = Θ(n log log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 58 Spring 2019 58 / 61

Recurrence: Example I

1 Consider T (n) = 2T (n/2) + n/ log n for n > 2, T (2) = 1.
2 Construct recursion tree, and observe pattern. i th level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i / log n
2i .

3 Summing over all levels

T (n) =

log n−1∑

i=0

2i

[
(n/2i)

log(n/2i)

]

=

log n−1∑

i=0

n
log n − i

= n
log n∑

j=1

1

j
= nHlog n = Θ(n log log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 58 Spring 2019 58 / 61

Recurrence: Example II

1 Consider T (n) = T (
√

n) + 1 for n > 2, T (2) = 1.

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T (n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Chan, Har-Peled, Hassanieh (UIUC) CS374 59 Spring 2019 59 / 61

Recurrence: Example II

1 Consider T (n) = T (
√

n) + 1 for n > 2, T (2) = 1.

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T (n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Chan, Har-Peled, Hassanieh (UIUC) CS374 59 Spring 2019 59 / 61

Recurrence: Example III

1 Consider T (n) =
√

nT (
√

n) + n for n > 2, T (2) = 1.

2 Using recursion trees: number of levels L = log log n
3 Work at each level? Root is n, next level is

√
n ×
√

n = n.
Can check that each level is n.

4 Thus, T (n) = Θ(n log log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 60 Spring 2019 60 / 61

Recurrence: Example III

1 Consider T (n) =
√

nT (
√

n) + n for n > 2, T (2) = 1.

2 Using recursion trees: number of levels L = log log n
3 Work at each level? Root is n, next level is

√
n ×
√

n = n.
Can check that each level is n.

4 Thus, T (n) = Θ(n log log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 60 Spring 2019 60 / 61

Recurrence: Example IV

1 Consider T (n) = T (n/4) + T (3n/4) + n for n > 4.
T (n) = 1 for 1 ≤ n ≤ 4.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n
5 Thus, n log4 n ≤ T (n) ≤ n log4/3 n, which means

T (n) = Θ(n log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 61 Spring 2019 61 / 61

Recurrence: Example IV

1 Consider T (n) = T (n/4) + T (3n/4) + n for n > 4.
T (n) = 1 for 1 ≤ n ≤ 4.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n
5 Thus, n log4 n ≤ T (n) ≤ n log4/3 n, which means

T (n) = Θ(n log n)

Chan, Har-Peled, Hassanieh (UIUC) CS374 61 Spring 2019 61 / 61

	Brief Intro to Algorithm Design and Analysis
	What is a good algorithm?
	Reductions and Recursion
	Recursion

	Divide and Conquer
	Merge Sort
	Merge Sort
	Analysis
	Solving Recurrences

	Quick Sort

	Binary Search
	Solving Recurrences

