Algorithms \& Models of Computation

 CS/ECE 374, Spring 2019
Dynamic Programming

Lecture 13
Thursday, February 28, 2019

Part I

Dynamic programming

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $f \circ o(x)$ that takes an input x.

- On input of size \boldsymbol{n} the number of distinct sub-problems that $f o o(x)$ generates is at most $A(n)$
- $f 00(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $f o o(x)$ that takes an input x.

- On input of size \boldsymbol{n} the number of distinct sub-problems that $f o o(x)$ generates is at most $A(n)$
- $f 0 o(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.
Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $\boldsymbol{f o o}(x)$ that takes an input \boldsymbol{x}.

- On input of size \boldsymbol{n} the number of distinct sub-problems that foo (x) generates is at most $A(n)$
- $f o o(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.
Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.
Q: What is an upper bound on the running time of memoized version of $f o o(x)$ if $|x|=n$?

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $f o o(x)$ that takes an input x.

- On input of size \boldsymbol{n} the number of distinct sub-problems that foo(x) generates is at most $A(n)$
- $f 0 o(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.
Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.
Q: What is an upper bound on the running time of memoized version of $f o o(x)$ if $|x|=n ? O(A(n) B(n))$.

Part II

Checking if a string is in L*

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal Decide if $w \in L^{*}$ using IsStrlnL(string x) as a black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L
Goal Decide if $w \in L^{*}$ using $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ as a
black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

$$
8
$$

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{lsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal $\begin{aligned} & \text { Decide if } w \in L \\ & \\ & \\ & \text { IsStrlnL }(\text { string } \quad x)\end{aligned} \quad$ as a black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStrlnL}($ string $x)$ that decides whether x is in L

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal Decide if $w \in L^{*}$ using IsStrlnL(string x) as a black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $L \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{IsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal Decide if $w \in L^{*}$ using IsStrlnL(string x) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Recursive Solution

When is $w \in L^{*}$?

Recursive Solution

When is $w \in L^{*}$?
$w \in L^{*}$ if $\boldsymbol{w}=\boldsymbol{\epsilon}$ or $\boldsymbol{w} \in L$ or if $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v}$ where $\boldsymbol{u} \in L$ and $v \in L^{*},|u| \geq 1$

Recursive Solution

When is $w \in L^{*}$?
$w \in L^{*}$ if $w=\epsilon$ or $w \in L$ or if $w=u v$ where $u \in L$ and $v \in L^{*},|u| \geq 1$

Assume w is stored in array $\boldsymbol{A}[1 . . n]$
IsStringinLstar($A[1 . . n]$):
If ($\boldsymbol{n}=\mathbf{0}$) Output YES
If (IsStrlnL(A[1..n]))
Output YES
Else

$$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
& \text { If (IsStrInL(A[1..i]) and IsStrInLstar(A[i+1..n])) } \\
& \text { Output YES }
\end{aligned}
$$

Output NO

Recursive Solution

Assume w is stored in array $A[1 . . n]$

IsStringinLstar(A[1..n]):

If ($\boldsymbol{n}=\mathbf{0}$) Output YES
If (IsStrlnL(A[1..n]))
Output YES
Else

$$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
& \text { If }(\operatorname{IsStrInL}(A[1 . . i]) \text { and } \operatorname{IsStrlnLstar}(A[i+1 . . n])) \\
& \text { Output YES }
\end{aligned}
$$

Output NO
\# times call IsStrInL
$T(n)=\sum_{i=1}^{n-1} T(n-i)+n$

$$
=O\left(2^{n}\right)
$$

Recursive Solution

Assume w is stored in array $A[1 . . n]$

```
IsStringinLstar(A[1..n]):
    If (n=0) Output YES
    If (IsStrlnL(A[1..n]))
        Output YES
```

 Else
 For (\(\boldsymbol{i}=1\) to \(\boldsymbol{n}-1\)) do
 If (IsStrInL(A[1..i]) and IsStrInLstar(A[i+1..n]))
 Output YES
 Output NO
 Question: How many distinct sub-problems does IsStrInLstar($A[1 . . n])$ generate?

Recursive Solution

Assume w is stored in array $A[1 . . n]$

```
IsStringinLstar(A[1..n]):
    If (n=0) Output YES
    If (IsStrlnL(A[1..n]))
        Output YES
```

 Else
 $$
\begin{aligned}
& \text { For }(i=1 \text { to } n-1) \text { do } \\
& \text { If (IsStrInL(A[1..i]) and IsStrInLstar(A[i+1..n])) } \\
& \text { Output YES }
\end{aligned}
$$

Output NO
Question: How many distinct sub-problems does IsStrInLstar $(A[1 . . n])$ generate? $O(n)$

Example

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n)$ we name them to help us understand the structure better.

ISL(i): a boolean which is $\mathbf{1}$ if $A[i . . n]$ is in $L^{*}, \mathbf{0}$ otherwise

Base case: $\operatorname{ISL}(n+1)=1$ interpreting $A[n+1 . . n]$ as ϵ

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n)$ we name them to help us understand the structure better.

ISL(i): a boolean which is $\mathbf{1}$ if $A[i . . n]$ is in $L^{*}, \mathbf{0}$ otherwise
Base case: $\operatorname{ISL}(n+1)=1$ interpreting $A[n+1 . . n]$ as ϵ Recursive relation:

$$
\begin{aligned}
& \text { ursive relation: } \\
& A[\ldots n] \in L^{*} \quad \text { suffer prefie }
\end{aligned}
$$

$\int \operatorname{ISL}(i)=1$ if $\quad A[j \ldots n] \in L^{*} \quad A[i \ldots(j-1)] \in L$ $\exists i<j \leq n+1$ s.t ISL(j) and IsStrInL(A[i..(j-1])

- ISL(i) $=\mathbf{0}$ otherwise

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n)$ we name them to help us understand the structure better.

ISL(i): a boolean which is $\mathbf{1}$ if $A[i . . n]$ is in $L^{*}, \mathbf{0}$ otherwise
Base case: $\operatorname{ISL}(n+1)=1$ interpreting $A[n+1 . . n]$ as ϵ Recursive relation:

- $\operatorname{ISL}(i)=1$ if $\exists i<j \leq n+1$ s.t ISL(j) and IsStrInL(A[i.. $(j-1])$
- ISL(i) $=0$ otherwise

Output: ISL(1)

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why?

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.
How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.
Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Iterative Algorithm

$$
\begin{aligned}
& \text { IsStringinLstar-Iterative(} A[1 . . n]) \text { : } \\
& \text { boolean ISL[1.. }(n+1)] \\
& \operatorname{ISL}[n+1]=\text { TRUE } \\
& \text { for (} \boldsymbol{i}=\boldsymbol{n} \text { down to } \mathbf{1} \text {) } \\
& I S L[i]=F A L S E \\
& \begin{aligned}
& \text { for }(j=i+1\text { to } n+1) \\
& \text { If }(\operatorname{ISL}[j] n \quad n \\
&\text { and } \operatorname{IsStrInL}(A[i . . j-1]))
\end{aligned} \\
& \operatorname{ISL[i]}=\text { TRUE } \\
& \text { Break } \\
& \text { If (ISL[1] = 1) Output YES } \\
& \text { Else Output NO }
\end{aligned}
$$

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]) :
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
        ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time:

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
        ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrlnL is $O(1)$ time)

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
    ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrInL is $O(1)$ time)
- Space:

Iterative Algorithm

```
IsStringinLstar-Iterative( }A[1..n])\mathrm{ :
    boolean ISL[1..(n+1)]
    ISL[n+1] = TRUE
    for (i=n down to 1)
    ISL[i] = FALSE
        for (j=i+1 to n+1)
        If (ISL[j] and IsStrInL(A[i..j - 1]))
                        ISL[i] = TRUE
                        Break
    If (ISL[1] = 1) Output YES
    Else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrInL is $O(1)$ time)
- Space: $O(n)$

Example

$$
123456
$$

Consider string samiam

$$
\begin{aligned}
& \operatorname{ISL}[7]=\text { Irue } \\
& \begin{aligned}
\operatorname{ISL}[6] & =\text { True } \wedge \text { IsStinIL ("n") }=\text { False } \\
\operatorname{ISL}[5] & =\operatorname{ISL}[6] \wedge \text { Istin } I_{n} L(" a ")=\text { Fals } \\
& \text { or ISL }[7] \wedge \text { Istinn InL ("am") }=\text { True } \\
& =\text { Iru }
\end{aligned}
\end{aligned}
$$

Part III

Longest Increasing Subsequence

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if
$1 \leq i_{1}<i_{2}<\ldots<\boldsymbol{i}_{k} \leq \boldsymbol{n}$.

Definition

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: 5,2,1
(3) Increasing sequence: $3,5,9,17,54$

- Decreasing sequence: $\mathbf{3 4}, \mathbf{2 1}, \mathbf{7 , 5 , 1}$
- Increasing subsequence of the first sequence: 2,7,9.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and $3,5,7,8$ and 2,7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(A[1 . . n]):$
T(1) Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n])=\operatorname{LIS}(\boldsymbol{A}[\mathbf{1 . .}(\boldsymbol{n}-\mathbf{1})])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}])$ is not so clear.

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS smaller ($A[1 . . n], x)$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than x.

Recursive Approach

$\operatorname{LIS}(A[1 . . n])$: the length of longest increasing subsequence in A
LIS_smaller($A[1 . . n], x)$: length of longest increasing subsequence in $A[1 . . n]$ with all numbers in subsequence less than x

LIS_smaller (A[1..n], x):
dortindude if $(n=0)$ then return 0
$A(r)$ if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m
Tinclude $A[n]$
$\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller (A[1..n], ∞)

Example

Sequence: $A[1 . .7]=6,3,5,2,7,8,1$

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0 $m=$ LIS_smaller (A[1.. $(n-1)], x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$\operatorname{LIS}(A[1 . . n])$:

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate?

Recursive Approach

LIS_smaller (A[1..n], x):
if $(n=0)$ then return 0
$m=$ LIS_smaller $(A[1 . .(n-1)], x)$
if $(A[n]<x)$ then

$$
m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n]))
$$

Output m

$\operatorname{LIS}(A[1 . . n]):$

return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$

Recursive Approach

LIS_smaller ($\boldsymbol{A}[1 . . n], x)$:

$$
\begin{aligned}
& \text { if }(n=0) \text { then return } 0 \\
& m=\text { LIS_smaller }(A[1 . .(n-1)], x) \\
& \text { if }(A[n]<x) \text { then } \\
& \quad m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n])) \\
& \text { Output } m
\end{aligned}
$$

$\operatorname{LIS}(A[1 . . n])$:

return LIS_smaller ($A[1 . . n], \infty)$

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion?

Recursive Approach

```
LIS_smaller ( \(\boldsymbol{A}[1 . . n], x)\) :
    if \((n=0)\) then return 0
    \(m=\) LIS_smaller (A[1.. \((n-1)], x)\)
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```


$\operatorname{LIS}(A[1 . . n]):$

 return LIS_smaller (A[1..n], \(\infty\))
 - How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.

Recursive Approach

```
LIS_smaller(A[1..n],x):
    if ( }n=0)\mathrm{ then return 0
    m= LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m=max(m,1 + LIS_smaller(A[1..(n-1)],A[n]))
    Output m
```

$\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?

Recursive Approach

```
LIS_smaller ( \(\boldsymbol{A}[1 . . n], x)\) :
    if \((n=0)\) then return 0
    \(m=\) LIS_smaller (A[1.. \((n-1)], x)\)
    if \((\underline{A}[n]<x)\) then
        \(m=\underline{m a x}(m, 1+\operatorname{LIS}\) _smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $O\left(n^{2}\right)$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add $\underline{\infty}$ at end of array (in position $n+1$) $\quad A[n+1]=\infty$

LIS (i, j) : length of longest increasing sequence in $A[1 . . i]$ among numbers less than $A[j]$ (defined only for $i<j$)

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n+1$)

LIS (i, j) : length of longest increasing sequence in $A[1 . . i]$ among numbers less than $A[j]$ (defined only for $i<j$)

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n+1$)
$\operatorname{LIS}(i, j)$: length of longest increasing sequence in $A[1 . . i]$ among numbers less than $A[j]$ (defined only for $i<j$)

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$ Recursive relation:

- $\operatorname{LIS}(i, j)=\operatorname{LIS}(i-1, j)$ if $A[i]>A[j]$
- $\operatorname{LIS}(i, j)=\max \{\underbrace{\operatorname{LIS}(i-1, j)}_{A[i] i \sin A}, \underbrace{1+\operatorname{LIS}(i-1, i)}_{A[i] \sin \operatorname{inLIS}}\}$ if

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n+\mathbf{1}$)
$\rightarrow \operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})$: length of longest increasing sequence in $\boldsymbol{A}[1 . . i]$ among numbers less than $A[j]$ (defined only for $i<j)^{\alpha}$

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$ Recursive relation:

- $\operatorname{LIS}(i, \underline{j})=\operatorname{LIS}(i-1, \underline{j})$ if $A[i]>A[j]$
- $\operatorname{LIS}(i, j)=\max \{\operatorname{LIS}(\underline{i}-1, \underline{j}), 1+\operatorname{LIS}(i-1, \underline{j})\}$ if \leftarrow $A[i] \leq A[j]$
\rightarrow Output: $\operatorname{LIS}(n, n+1)$

$$
(A[1 \ldots n] ; \infty)
$$

Iterative algorithm

```
LIS-Iterative (A[1..n]) :
    \(A[n+1]=\infty\)
    int LIS[0..n, 1..n + 1]
    for ( \(j=1\) to \(n+1\) ) do
        \(\operatorname{LIS}[0, j]=0\)
    for ( \(\boldsymbol{i}=\mathbf{1}\) to \(\boldsymbol{n}\) ) do
        for \((j=i+1\) to \(n)\)
            If \((A[i]>A[j]) \quad \operatorname{LIS}[i, j]=\operatorname{LIS}[i-1, j]\)
            Else \(\operatorname{LIS}[i, j]=\max \{\operatorname{LIS}[i-1, j], 1+\operatorname{LIS}[i-1, i]\}\)
```

Return $\operatorname{LIS}[\boldsymbol{n}, \boldsymbol{n}+1]$
Running time: $O\left(n^{2}\right)$
Space: $O\left(n^{2}\right) \curvearrowleft$

How to order bottom up computation?

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$
Recursive relation:

- $\operatorname{LIS}(i, j)=\widehat{\operatorname{LIS}(i-1}, j)$ if $A[i]>A[j]$
- $\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})=\max \{\operatorname{LIS}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{j}), 1+\operatorname{LIS}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{i})\}$ if $A[i] \leq A[j]$

How to order bottom up computation?

Sequence: $A[1 . .7]=6,3,5,2,7,8,1, \infty$

Two comments

Question: Can we compute an optimum solution and not just its value?

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.
Question: Is there a faster algorithm for LIS?

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

Recursive Algorithm: Take 2

Definition
 LISEnding $(A[1 . . n])$: length of longest increasing sub-sequence that ends in $\boldsymbol{A}[\boldsymbol{n}]$.

Question: can we obtain a recursive expression?

Recursive Algorithm: Take 2

Definition

LISEnding($\boldsymbol{A}[\mathbf{1 . . n}])$: length of longest increasing sub-sequence that ends in $\boldsymbol{A}[\boldsymbol{n}]$.

Question: can we obtain a recursive expression?
$\operatorname{LISEnding}(A[1 . . n])=\max _{i: A[i]<A[n]}(1+\operatorname{LISEnding}(A[1 . . i]))$

Example

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n])\) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if \((A[i]<A[n])\) then
        \(m=\underline{\max }(m, 1+\) LIS_ending_alg \((A[1 . . i]))\)
    return m
```

$\operatorname{LIS}(A[1 . . n]):$
return $\max _{i=1}^{n}$ LIS_ending_alg(A[1...i])

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n])\) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if \((A[i]<A[n])\) then
        \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return \(m\)
 \(\operatorname{LIS}(A[1 . . n])\) :
 return \(\max _{i=1}^{n}\) LIS_ending_alg(A[1...i])
 - How many distinct sub-problems will LIS_ending_alg($A[1 . . n])$ generate?

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n]\) ) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if \((A[i]<A[n])\) then
                \(\overrightarrow{m=\underline{\max }}(m, 1+\) LIS_ending_alg(A[1..i]))
```

 return \(m\)
 $\operatorname{LIS}(A[1 . . n]):$
return $\max _{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg($A[1 . . n])$ generate? $O(n)$

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n])\) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if \((A[i]<A[n])\) then
        \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return \(m\)
 $\operatorname{LIS}(A[1 . . n]):$
return $\max _{i=1}^{n}$ LIS_ending_alg $(A[1 \ldots i])$

- How many distinct sub-problems will LIS_ending_alg($A[1 . . n])$ generate? $O(n)$
- What is the running time if we memoize recursion?

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n])\) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if \((A[i]<A[n])\) then
        \(m=\max (m, 1+\) LIS_ending_alg \((A[1 . . i]))\)
```

 return \(m\)
 $\operatorname{LIS}(A[1 . . n]):$
return $\max _{i=1}^{n}$ LIS_ending_alg $(A[1 \ldots i])$

- How many distinct sub-problems will LIS_ending_alg($A[1 . . n])$ generate? $O(n)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(n)$ time

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n])\) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if ( \(A[i]<A[n]\) ) then
                \(m=\max (m, 1+\) LIS_ending_alg \((A[1 . . i]))\)
```

 return \(m\)
 $\operatorname{LIS}(A[1 . . n]):$
return $\max _{i=1}^{n}$ LIS_ending_alg $(A[1 \ldots i])$

- How many distinct sub-problems will LIS_ending_alg($A[1 . . n])$ generate? $O(n)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(n)$ time
- How much space for memoization?

Recursive Algorithm: Take 2

```
LIS_ending_alg ( \(\boldsymbol{A}[1 . . n])\) :
    if \((\boldsymbol{n}=\mathbf{0})\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if ( \(A[i]<A[n]\) ) then
                \(m=\max (m, 1+\) LIS_ending_alg \((A[1 . . i]))\)
```

 return m
 $\operatorname{LIS}(A[1 . . n]):$
return $\max _{i=1}^{n}$ LIS_ending_alg $(A[1 \ldots i])$

- How many distinct sub-problems will LIS_ending_alg($A[1 . . n])$ generate? $O(n)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(n)$ time
- How much space for memoization? $O(n)$

Iterative Algorithm via Memoization

Compute the values LIS_ending_alg(A[1..i]) iteratively in a bottom up fashion.

LIS_ending_alg (A[1..n]) : Array $L[1 . . n]$ (* $L[i]=$ value of LIS_ending_alg $(\boldsymbol{A}[1 . . i]) *)$
\longrightarrow for $i=1$ to n do

$$
L[i]=1
$$

\rightarrow for $j=1$ to $i-1$ do

$$
\begin{aligned}
& \text { if }(A[j]<A[i]) \text { do } \\
& \rightarrow L[i]=\max (L[i], 1+L[j])
\end{aligned}
$$

return L

```
LIS(A[1..n]):
    L = LIS_ending_alg(A[1..n])
    return the maximum value in L
```


Iterative Algorithm via Memoization

Simplifying:

```
LIS(A[1..n]) :
```

 Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
 \(m=0\)
 for \(\boldsymbol{i}=1\) to \(\boldsymbol{n}\) do
 \(L[i]=1\)
 for \(j=1\) to \(i-1\) do
 if \((A[j]<A[i])\) do
 \(L[i]=\max (L[i], 1+L[j])\)
 \(m=\max (m, L[i])\)
 return \(m\)

Iterative Algorithm via Memoization

Simplifying:
$\operatorname{LIS}(A[1 . . n]):$

```
    Array \(L[1 . . n]\) (* \(L[i]\) stores the value LISEnding(A[1..i]) *)
    \(m=0\)
    for \(\boldsymbol{i}=1\) to \(\boldsymbol{n}\) do
        \(L[i]=1\)
        for \(j=1\) to \(i-1\) do
        if \((A[j]<A[i])\) do
        \(\rightarrow L[i]=\max (L[i], 1+L[j])\)
    \(\rightarrow \boldsymbol{m}=\max (\boldsymbol{m}, \underline{L[j]})\)
    return \(m\)
```

Correctness: Via induction following the recursion Running time:

Iterative Algorithm via Memoization

Simplifying:
$\operatorname{LIS}(A[1 . . n]):$

```
    Array \(L[1 . . n]\) (* \(L[i]\) stores the value LISEnding (A[1..i]) *)
    \(m=0\)
    for \(i=1\) to \(n\) do
        \(L[i]=1\)
        for \(j=1\) to \(i-1\) do
        if \((\boldsymbol{A}[j]<\boldsymbol{A}[i])\) do
        \(L[i]=\max (L[i], 1+L[j])\)
    \(m=\max (m, L[i])\)
    return m
```

Correctness: Via induction following the recursion Running time: $O\left(n^{2}\right)$ Space:

Iterative Algorithm via Memoization

Simplifying:
$\operatorname{LIS}(A[1 . . n]):$

```
    Array \(L[1 . . n]\) (* \(L[i]\) stores the value LISEnding (A[1..i]) *)
    \(m=0\)
    for \(i=1\) to \(n\) do
        \(L[i]=1\)
        for \(j=1\) to \(i-1\) do
        if \((\boldsymbol{A}[j]<\boldsymbol{A}[i])\) do
        \(L[i]=\max (L[i], 1+L[j])\)
    \(m=\max (m, L[i])\)
    return m
```

Correctness: Via induction following the recursion Running time: $O\left(n^{2}\right)$
Space: $\boldsymbol{\Theta}(\boldsymbol{n})$

Iterative Algorithm via Memoization

Simplifying:

LIS (A[1..n]) :

```
    Array \(L[1 . . n]\) (* \(L[i]\) stores the value LISEnding (A[1..i]) *)
    \(m=0\)
    for \(i=1\) to \(n\) do
        \(L[i]=1\)
        for \(j=1\) to \(i-1\) do
        if \((\boldsymbol{A}[j]<\boldsymbol{A}[i])\) do
        \(L[i]=\max (L[i], 1+L[j])\)
    \(m=\max (m, L[i])\)
    return m
```

Correctness: Via induction following the recursion Running time: $O\left(n^{2}\right)$
Space: $\boldsymbol{\Theta}(\boldsymbol{n})$
$O(n \log n)$ run-time achievable via better data structures.

Example

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Longest increasing subsequence: $3,5,7,8$

Example

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Longest increasing subsequence: $3,5,7,8$
(1) $L[i]$ is value of longest increasing subsequence ending in $A[i]$
(2) Recursive algorithm computes $L[i]$ from $L[1]$ to $L[i-1]$
(3) Iterative algorithm builds up the values from $L[1]$ to $L[n]$

Dynamic Programming

(1) Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
(2) Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
(0) Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.

- Optimize the resulting algorithm further

