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Part I

Shortest Paths with Negative Length
Edges
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Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems
Input: A directed graph
G = (V ,E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find
shortest path from s to t.

2 Given node s find shortest
path from s to all other
nodes.
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What are the distances computed by Dijkstra’s

algorithm?

1
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s
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1

x −5

The distance as computed
by Dijkstra algorithm start-
ing from s:

(A) s = 0, x = 5,
y = 1, z = 0.

(B) s = 0, x = 1,
y = 2, z = 5.

(C) s = 0, x = 5,
y = 1, z = 2.

(D) IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the assumption
that if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk
then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for
non-negative edge lengths.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.
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Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose
1 G has a negative length cycle C , and
2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

1 undefined, that is −∞, OR
2 the length of a shortest simple path from s to t.

Lemma
If there is an efficient algorithm to find a shortest simple s → t path
in a graph with negative edge lengths, then there is an efficient
algorithm to find the longest simple s → t path in a graph with
positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!
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Alternatively: Finding Shortest Walks

Given a graph G = (V ,E):

1 A path is a sequence of distinct vertices v1, v2, . . . , vk such
that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1.

2 A walk is a sequence of vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .

1 If there is a walk from u to v that contains negative length cycle
then dist(u, v) = −∞

2 Else there is a path with at most n − 1 edges whose length is
equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V ,E) with edge lengths (could be
negative). For edge e = (u, v), `(e) = `(u, v) is its length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: With negative lengths, shortest path problems and negative
cycle detection in undirected graphs cannot be reduced to directed
graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms
are different and more involved than those for directed graphs.
Beyond the scope of this class. If interested, ask instructor for
references.
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Why Negative Lengths?

Several Applications

1 Shortest path problems useful in modeling many situations — in
some negative lengths are natural

2 Negative length cycle can be used to find arbitrage opportunities
in currency trading

3 Important sub-routine in algorithms for more general problem:
minimum-cost flow

Chan, Har-Peled, Hassanieh (UIUC) CS374 11 Spring 2019 11 / 58



Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

1 Is there an arbitrage opportunity?

2 Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?

Concrete example:
1 1 Chinese Yuan = 0.1116 Euro

2 1 Euro = 1.3617 US dollar

3 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ →
Yuan→ Euro→ $, we get:
0.1116 ∗ 1.3617 ∗ 7.1 =
1.07896$.
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj) = − log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2d units of j .
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Reducing Currency Trading to Shortest Paths
Math recall - relevant information

1 log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · ·+ logαk .

2 log x > 0 if and only if x > 1 .
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k . Holds true
only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other
strategies.
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Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1). Recursion for d(v , k):

d(v , k) = min

{
minu∈V (d(u, k − 1) + `(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.
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Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ i n(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn) Space: O(m + n2)
Space can be reduced to O(m + n).
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Bellman-Ford Algorithm

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ i n(v) do
d(v) = min{d(v), d(u) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(mn) Space: O(m + n)
Exercise: Argue that this achieves same results as algorithm on
previous slide.
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Bellman-Ford: Negative Cycle Detection

Check if distances change in iteration n.

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ i n(v) do
d(v) = min{d(v), d(u) + `(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ i n(v) do

if (d(v) > d(u) + `(u, v))
Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)

Chan, Har-Peled, Hassanieh (UIUC) CS374 21 Spring 2019 21 / 58






Correctness of the Bellman-Ford Algorithm

Via induction: For each v , d(v , k) is the length of a shortest walk
from s to v with at most k hops.

Lemma
Suppose G does not have a negative length cycle reachable from s.
Then for all v , dist(s, v) = d(v , n − 1). Moreover,
d(v , n − 1) = d(v , n).

Proof.
Exercise.

Corollary
Bellman-Ford correctly outputs the shortest path distances if G has
no negative length cycle reachable from s.
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no negative length cycle reachable from s.
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Correctness: Detecting negative length cycle

Lemma
G has a negative length cycle reachable from s if and only if there is
some node v such that d(v , n) < d(v , n − 1).

Lemma proves correctness of negative cycle detection by
Bellman-Ford algorithm.

The only if direction follows from Lemma on previous slide. We prove
the if direction in the next slide.
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Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there is
some node v ∈ C such that d(v , n) < d(v , n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . .→ vh → v1 be negative
length cycle reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h
since C is reachable from s. By assumption d(v , n) ≥ d(v , n − 1)
for all v ∈ C ; implies no change in nth iteration;
d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means
d(vi , n − 1) ≤ d(vi−1, n − 1) + `(vi−1, vi) for 2 ≤ i ≤ h and
d(v1, n − 1) ≤ d(vn, n − 1) + `(vn, v1). Adding up all these
inequalities results in the inequality 0 ≤ `(C) which contradicts the
assumption that `(C) < 0.
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Proof in more detail...

s

v0

v1 v2

v3

v4v5

C

d(s, v1) ≤ d(s, v0) + `(v0, v1)

d(s, v2) ≤ d(s, v1) + `(v1, v2)

. . .

d(s, vi) ≤ d(s, vi−1) + `(vi−1, vi)

. . .

d(s, vk) ≤ d(s, vk−1) + `(vk−1, vk)

d(s, v0) ≤ d(s, vk) + `(vk , vk)

k∑
i=0

d(s, vi) ≤
k∑

i=0

d(s, vi) +
k∑

i=1

`(vi−1, vi) + `(vk , v0)
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v4v5

C

k∑
i=0

d(s, vi) ≤
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i=0

d(s, vi) +
k∑

i=1

`(vi−1, vi) + `(vk , v0)

0 ≤
k∑

i=1

`(vi−1, vi) + `(vk , v0) = len(C) .
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Proof in more detail...

s

v0

v1 v2

v3

v4v5

C

k∑
i=0

d(s, vi) ≤
k∑

i=0

d(s, vi) +
k∑

i=1

`(vi−1, vi) + `(vk , v0)

0 ≤
k∑

i=1

`(vi−1, vi) + `(vk , v0) = len(C) .

C is a not a negative cycle. Contradiction.
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

For each v the d(v) can only get smaller as algorithm proceeds.

If d(v) becomes smaller it is because we found a vertex u such
that d(v) > d(u) + `(u, v) and we update
d(v) = d(u) + `(u, v). That is, we found a shorter path to v
through u.

For each v have a prev(v) pointer and update it to point to u
if v finds a shorter path via u.

At end of algorithm prev(v) pointers give a shortest path tree
oriented towards the source s.
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run Bellman-Ford |V | times, once from each node u?
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Negative Cycle Detection

1 Add a new node s ′ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s ′ will fill find a negative
length cycle if there is one. Exercise: why does this work?

2 Negative cycle detection can be done with one Bellman-Ford
invocation.
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Part II

Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles! Hence can find
shortest paths even for negative length edges

2 Can order nodes using topological sort
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Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.
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Algorithm for DAGs

for i = 1 to n do
d(s, vi ) =∞

d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Adj(vi ) do

d(s, vj ) = min{d(s, vj ), d(s, vi ) + `(vi , vj )}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.
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Bellman-Ford and DAGs

Bellman-Ford is based on the following principles:
The shortest walk length from s to v with at most k hops can
be computed via dynamic programming
G has a negative length cycle reachable from s iff there is a
node v such that shortest walk length reduces after n hops.

We can find hop-constrained shortest paths via graph reduction.
Given G = (V ,E) with edge lengths `(e) and integer k
construction new layered graph G ′ = (V ′,E ′) as follows.

V ′ = V × {0, 1, 2, . . . , k}.
E ′ = {((u, i), (v , i + 1) | (u, v) ∈ E , 0 ≤ i < k},
`((u, i), (v , i + 1)) = `(u, v)

Lemma
Shortest path distance from (u, 0) to (v , k) in G ′ is equal to the
shortest walk from u to v in G with exactly k edges.
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Layered DAG: Figure
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Part III

All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge

lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).
Θ
(
n4
)

if m = Ω
(
n2
)
.

Can we do better?
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All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) =

100

dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5
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For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(A) 9

(B) 10

(C) 11

(D) 12

(E) 15
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

Base case: dist(i , j , 0) = `(i , j) if (i , j) ∈ E , otherwise∞
Correctness: If i → j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then
G has a negative length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) ≥ 0. We can
detect this during the algorithm or wait till the end.

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j) (* `(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time: Θ(n3), Space: Θ(n3).
Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

1 Create a n × n array Next that stores the next vertex on
shortest path for each pair of vertices

2 With array Next, for any pair of given vertices i , j can compute
a shortest path in O(n) time.
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Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j)
(* `(i , j) =∞ if (i , j) not edge, 0 if i = j *)

Next(i , j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (dist(i , j , k − 1) > dist(i , k, k − 1) + dist(k, j , k − 1)) then
dist(i , j , k) = dist(i , k, k − 1) + dist(k, j , k − 1)
Next(i , j) = k

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i , j describe an
O(n) algorithm to find a i -j shortest path.
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Summary of results on shortest paths

Single source
No negative edges Dijkstra O(n log n + m)

Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O
(
n2 log n + nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4
)

No negative cycles (*) BF + n * Dijkstra O
(
nm + n2 log n

)
No negative cycles Floyd-Warshall O

(
n3
)

Unweighted Matrix multiplication O(n2.38), O(n2.58)
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Summary of results on shortest paths
More details

(*): The algorithm for the case that there are no negative cycles, and
doing all shortest paths, works by computing a potential function
using Bellman-Ford and then doing Dijkstra. It is mentioned for
the sake of completeness, but it outside the scope of the class.
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Part IV

DFA to Regular Expression
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Back to Regular Languages

We saw the following two theorems previously.

Theorem
For every NFA N over a finite alphabet Σ there is DFA M such
that L(M) = L(N).

Theorem
For every regular expression r over finite alphabet Σ there is a NFA
N such that L(N) = L(r).

We claimed the following theorem which would prove equivalence of
NFAs, DFAs and regular expressions.

Theorem
For every DFA M over a finite alphabet Σ there is a regular
expression r such that L(M) = L(r).
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DFA to Regular Expression

Given DFA M = (Q,Σ, δ, q1,F ) want to construct an equivalent
regular expression r .

Idea:

Number states of DFA: Q = {q1, . . . , qn} where |Q| = n.

Define Li ,j = {w | δ(qi ,w) = qj}. Note Li ,j is regular. Why?

L(M) = ∪qi∈FL1,i .

Obtain regular expression ri ,j for Li ,j .

Then r =
∑

qi∈F r1,i is regular expression for L(M) – here the
summation is the or operator.

Note: Using q1 for start state is intentional to help in the notation
for the recursion.
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A recursive expression for Li,j

Define Lk
i ,j be set of strings w in Li ,j such that the highest index

state visited by M on walk from qi to qj (not counting end points i
and j) on input w is at most k .

From definition
Li ,j = Ln

i ,j

Claim:

L0
i ,j =

{
{a ∈ Σ | δ(qi , a) = qj} if i 6= j
{a ∈ Σ | δ(qi , a) = qj} ∪ {ε} if i = j

Lk
i ,j = Lk−1

i ,j ∪
(
Lk−1

i ,k · (L
k−1
k,k )∗ · Lk−1

k,j

)
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A recursive expression for Li,j

Claim:

L0
i ,j =

{
{a ∈ Σ | δ(qi , a) = qj} if i 6= j
{a ∈ Σ | δ(qi , a) = qi} ∪ {ε} if i = j

Lk
i ,j = Lk−1

i ,j ∪
(
Lk−1

i ,k · (L
k−1
k,k )∗ · Lk−1

k,j

)
Proof: by picture

qi qj

qk
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A recursive expression for Li,j

Li ,j = Ln
i ,j

Claim:
L0

i ,j = {a ∈ Σ | δ(qi , a) = qj}

Lk
i ,j = Lk−1

i ,j ∪
(
Lk−1

i ,k · (L
k−1
k,k )∗ · Lk−1

k,j

)
From claim, can easily construct regular expression r k

i ,j for Lk
i ,j . This

leads to a regular expression for

L(M) = ∪qi∈FL1,i = ∪qi∈FLn
1,i
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Example

q1 q2

a

a

b

b

L(M) = L2
1,2

r 2
1,2 = r 1

1,2 + r 1
1,2(r 1

2,2)∗r 1
2,2

r 1
1,2 = r 0

1,2 + r 0
1,1(r 0

1,1)∗r 0
1,2

r 1
2,2 = r 0

2,2 + r 0
2,1(r 0

1,1)∗r 0
1,2

r 0
1,1 = r 0

2,2 = (b + ε)

r 0
1,2 = r 0

2,1 = a
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Correctness

Similar to that of Floyd-Warshall algorithms for shortest paths via
induction.

The length of the regular expression can be exponential in the size of
the original DFA.
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Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1 How to come up with the recursion?

2 How to recognize that dynamic programming may apply?

Chan, Har-Peled, Hassanieh (UIUC) CS374 56 Spring 2019 56 / 58



Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1 How to come up with the recursion?

2 How to recognize that dynamic programming may apply?

Chan, Har-Peled, Hassanieh (UIUC) CS374 56 Spring 2019 56 / 58



Some Tips

1 Problems where there is a natural linear ordering: sequences,
paths, intervals, DAGs etc. Recursion based on ordering (left to
right or right to left or topological sort) usually works.

2 Problems involving trees: recursion based on subtrees.
3 More generally:

1 Problem admits a natural recursive divide and conquer
2 If optimal solution for whole problem can be simply composed

from optimal solution for each separate pieces then plain divide
and conquer works directly

3 If optimal solution depends on all pieces then can apply
dynamic programming if interface/interaction between pieces is
limited. Augment recursion to not simply find an optimum
solution but also an optimum solution for each possible way to
interact with the other pieces.
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Examples

1 Longest Increasing Subsequence: break sequence in the middle
say. What is the interaction between the two pieces in a
solution?

2 Sequence Alignment: break both sequences in two pieces each.
What is the interaction between the two sets of pieces?

3 Independent Set in a Tree: break tree at root into subtrees.
What is the interaction between the subtrees?

4 Independent Set in an graph: break graph into two graphs.
What is the interaction? Very high!

5 Knapsack: Split items into two sets of half each. What is the
interaction?
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