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Part I

Algorithms for Minimum Spanning
Tree
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Minimum Spanning Tree

Input Connected graph G = (V ,E) with edge costs

Goal Find T ⊆ E such that (V ,T ) is connected and total
cost of all edges in T is smallest

1 T is the minimum spanning tree (MST) of G

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 47



























Minimum Spanning Tree

Input Connected graph G = (V ,E) with edge costs

Goal Find T ⊆ E such that (V ,T ) is connected and total
cost of all edges in T is smallest

1 T is the minimum spanning tree (MST) of G

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 47



Applications

1 Network Design
1 Designing networks with minimum cost but maximum

connectivity

2 Approximation algorithms
1 Can be used to bound the optimality of algorithms to

approximate Traveling Salesman Problem, Steiner Trees, etc.

3 Cluster Analysis
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Some basic properties of Spanning Trees

A graph G is connected iff it has a spanning tree

Every spanning tree of a graph on n nodes has n − 1 edges

Let T = (V ,ET ) be a spanning tree of G = (V ,E). For
every non-tree edge e ∈ E \ ET there is a unique cycle C in
T + e. For every edge f ∈ C − {e}, T − f + e is another
spanning tree of G .
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Part II

The Algorithms
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Greedy Template

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E
if (e satisfies condition)

add e to T
return the set T

Main Task: In what order should edges be processed? When should
we add edge to spanning tree?

KA PA RD
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Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and
add edges to T as long as they don’t form a cycle.
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Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T . In
each iteration, pick edge with least attachment cost to T .
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Bor̊uvka’s Algorithm

Simplest to implement. See notes.
Assume G is a connected graph.

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T
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Reverse Delete Algorithm

Initially E is the set of all edges in G
T is E (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E of largest cost

if removing e does not disconnect T then
remove e from T

return the set T

Returns a minimum spanning tree. Back
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Reverse Delete Algorithm
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Part III

Safe and unsafe edges
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Assumption
And for now . . .

Assumption
Edge costs are distinct, that is no two edge costs are equal.
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Cuts

Definition
Given a graph G = (V ,E), a cut is
a partition of the vertices of the graph
into two sets (S,V \ S).

Edges having an endpoint on both
sides are the edges of the cut.

A cut edge is crossing the cut.

S V \ S
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Safe and Unsafe Edges

Definition
An edge e = (u, v) is a safe edge if there is some partition of V
into S and V \ S and e is the unique minimum cost edge crossing S
(one end in S and the other in V \ S).

Definition
An edge e = (u, v) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C .

Proposition
If edge costs are distinct then every edge is either safe or unsafe.

Proof.
Exercise.
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Every edge is either safe or unsafe

Proposition
If edge costs are distinct then every edge is either safe or unsafe.
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Safe edge
Example...

Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

...the cheapest edge in the cut.
Note: An edge e may be a safe edge for many cuts!
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...the cheapest edge in the cut.
Note: An edge e may be a safe edge for many cuts!
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Unsafe edge
Example...

Every cycle identifies one unsafe edge...

5
7

2

15
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...the most expensive edge in the cycle.
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Example
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Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...
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Some key observations
Proofs later

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Lemma
If e is an unsafe edge then no MST of G contains e.
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Part IV

Correctness
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Correctness of MST Algorithms

1 Many different MST algorithms

2 All of them rely on some basic properties of MSTs, in particular
the Cut Property to be seen shortly.
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Key Observation: Cut Property

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Proof.
1 Suppose (for contradiction) e is not in MST T .

2 Since e is safe there is an S ⊂ V such that e is the unique min
cost edge crossing S .

3 Since T is connected, there must be some edge f with one end
in S and the other in V \ S

4 Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost! Error: T ′ may not be a spanning tree!!

Chan, Har-Peled, Hassanieh (UIUC) CS374 25 Spring 2019 25 / 47



Key Observation: Cut Property

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Proof.
1 Suppose (for contradiction) e is not in MST T .

2 Since e is safe there is an S ⊂ V such that e is the unique min
cost edge crossing S .

3 Since T is connected, there must be some edge f with one end
in S and the other in V \ S

4 Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chan, Har-Peled, Hassanieh (UIUC) CS374 25 Spring 2019 25 / 47




































Key Observation: Cut Property

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Proof.
1 Suppose (for contradiction) e is not in MST T .

2 Since e is safe there is an S ⊂ V such that e is the unique min
cost edge crossing S .

3 Since T is connected, there must be some edge f with one end
in S and the other in V \ S

4 Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost! Error: T ′ may not be a spanning tree!!

Chan, Har-Peled, Hassanieh (UIUC) CS374 25 Spring 2019 25 / 47






Error in Proof: Example
Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6). T− f + e is not a
spanning tree.
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1 (A) Consider adding the edge f .
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1 (A) Consider adding the edge f .

2 (B) It is safe because it is the
cheapest edge in the cut.

3 (C) Lets throw out the edge e
currently in the spanning tree
which is more expensive than f
and is in the same cut. Put it f
instead...

4 (D) New graph of selected edges
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Proof of Cut Property

Proof.
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1 Suppose e = (v ,w) is not in MST
T and e is min weight edge in cut
(S,V \ S). Assume v ∈ S .

2 T is spanning tree: there is a unique
path P from v to w in T

3 Let w ′ be the first vertex in P
belonging to V \ S ; let v ′ be the
vertex just before it on P, and let
e′ = (v ′,w ′)

4 T ′ = (T \ {e′})∪{e} is spanning
tree of lower cost. (Why?)
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Proof of Cut Property (contd)

Observation
T ′ = (T \ {e′}) ∪ {e} is a spanning tree.

Proof.
T ′ is connected.

Removed e′ = (v ′,w ′) from T but v ′ and w ′ are connected
by the path P − f + e in T ′. Hence T ′ is connected if T is.

T ′ is a tree

T ′ is connected and has n − 1 edges (since T had n − 1
edges) and hence T ′ is a tree
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Safe Edges form a Tree

Lemma
Let G be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

Proof.
1 Suppose not. Let S be a connected component in the graph

induced by the safe edges.

2 Consider the edges crossing S , there must be a safe edge among
them since edge costs are distinct and so we must have picked it.
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Safe Edges form an MST

Corollary
Let G be a connected graph with distinct edge costs, then set of safe
edges form the unique MST of G .

Consequence: Every correct MST algorithm when G has unique
edge costs includes exactly the safe edges.
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Cycle Property

Lemma
If e is an unsafe edge then no MST of G contains e.

Proof.
Exercise.

Note: Cut and Cycle properties hold even when edge costs are not
distinct. Safe and unsafe definitions do not rely on distinct cost
assumption.
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Correctness of Prim’s Algorithm

Prim’s Algorithm
Pick edge with minimum attachment cost to current tree, and add to
current tree.

Proof of correctness.
1 If e is added to tree, then e is safe and belongs to every MST.

1 Let S be the vertices connected by edges in T when e is added.
2 e is edge of lowest cost with one end in S and the other in

V \ S and hence e is safe.

2 Set of edges output is a spanning tree

1 Set of edges output forms a connected graph: by induction, S is
connected in each iteration and eventually S = V .

2 Only safe edges added and they do not have a cycle
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Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.
1 If e = (u, v) is added to tree, then e is safe

1 When algorithm adds e let S and S ’ be the connected
components containing u and v respectively

2 e is the lowest cost edge crossing S (and also S ’).
3 If there is an edge e′ crossing S and has lower cost than e,

then e′ would come before e in the sorted order and would be
added by the algorithm to T

2 Set of edges output is a spanning tree : exercise

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 47



Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.
1 If e = (u, v) is added to tree, then e is safe

1 When algorithm adds e let S and S ’ be the connected
components containing u and v respectively

2 e is the lowest cost edge crossing S (and also S ’).
3 If there is an edge e′ crossing S and has lower cost than e,

then e′ would come before e in the sorted order and would be
added by the algorithm to T

2 Set of edges output is a spanning tree : exercise

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 47



Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.
1 If e = (u, v) is added to tree, then e is safe

1 When algorithm adds e let S and S ’ be the connected
components containing u and v respectively

2 e is the lowest cost edge crossing S (and also S ’).

3 If there is an edge e′ crossing S and has lower cost than e,
then e′ would come before e in the sorted order and would be
added by the algorithm to T

2 Set of edges output is a spanning tree : exercise

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 47



Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.
1 If e = (u, v) is added to tree, then e is safe

1 When algorithm adds e let S and S ’ be the connected
components containing u and v respectively

2 e is the lowest cost edge crossing S (and also S ’).
3 If there is an edge e′ crossing S and has lower cost than e,

then e′ would come before e in the sorted order and would be
added by the algorithm to T

2 Set of edges output is a spanning tree : exercise

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 47



Correctness of Bor̊uvka’s Algorithm

Proof of correctness.
Argue that only safe edges are added.
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Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm
Consider edges in decreasing cost and remove an edge if it does not
disconnect the graph

Proof of correctness.
Argue that only unsafe edges are removed.
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When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny
and different cost to each edge

Formal argument: Order edges lexicographically to break ties

1 ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)

2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E ,
A 6= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)
and A \ B has a lower indexed edge than B \ A)

3 Can order all spanning trees according to lexicographic order of
their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with
respect to lexicographic ordering.
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Edge Costs: Positive and Negative

1 Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

2 Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why does
this work for MSTs but not for shortest paths?

3 Can compute maximum weight spanning tree by negating edge
costs and then computing an MST.

Question: Why does this not work for shortest paths?
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Edge Costs: Positive and Negative

1 Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

2 Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why does
this work for MSTs but not for shortest paths?

3 Can compute maximum weight spanning tree by negating edge
costs and then computing an MST.
Question: Why does this not work for shortest paths?
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Part V

Data Structures for MST: Priority
Queues and Union-Find
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Implementing Bor̊uvka’s Algorithm

No complex data structure needed.

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T

O(log n) iterations of while loop. Why? Number of connected
components shrink by at least half since each component merges
with one or more other components.

Each iteration can be implemented in O(m) time.

Running time: O(m log n) time.
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Implementing Prim’s Algorithm
Implementing Prim’s Algorithm

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

while S 6= V do
pick e = (v ,w) ∈ E such that

v ∈ S and w ∈ V − S
e has minimum cost

T = T ∪ e
S = S ∪ w

return the set T

Analysis

1 Number of iterations = O(n), where n is number of vertices
2 Picking e is O(m) where m is the number of edges
3 Total time O(nm)
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Implementing Prim’s Algorithm
More Efficient Implementation

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w , v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w , v) is minimum

while S 6= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v).
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Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

1 makeQ: create an empty queue

2 findMin: find the minimum key in S
3 extractMin: Remove v ∈ S with smallest key and return it

4 add(v , k(v)): Add new element v with key k(v) to S
5 Delete(v): Remove element v from S
6 decreaseKey (v , k ′(v)): decrease key of v from k(v) (current

key) to k ′(v) (new key). Assumption: k ′(v) ≤ k(v)

7 meld: merge two separate priority queues into one
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Prim’s using priority queues

E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w , v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w , v) is minimum

while S 6= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

1 Requires O(n) extractMin operations

2 Requires O(m) decreaseKey operations
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Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

1 Using standard Heaps, extractMin and decreaseKey take
O(log n) time. Total: O((m + n) log n)

2 Using Fibonacci Heaps, O(log n) for extractMin and O(1)
(amortized) for decreaseKey. Total: O(n log n + m).

3 Prim’s algorithm and Dijkstra’s algorithms are similar. Where is
the difference?

4 Prim’s algorithm = Dijkstra where length of a path π is the
weight of the heaviest edge in π. (Bottleneck shortest path.)
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Kruskal’s Algorithm

Kruskal ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E of minimum cost

if (T ∪ {e} does not have cycles)

add e to T
return the set T

1 Presort edges based on cost. Choosing minimum can be done in
O(1) time

2 Do BFS/DFS on T ∪ {e}. Takes O(n) time

3 Total time O(m log m) + O(mn) = O(mn)
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3 Total time O(m log m) + O(mn) = O(mn)
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Implementing Kruskal’s Algorithm Efficiently

Kruskal ComputeMST
Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do
pick e = (u, v) ∈ E of minimum cost

if u and v belong to different sets

add e to T
merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set
and to merge two sets.
Using Union-Find data structure can implement Kruskal’s algorithm
in O((m + n) log m) time.
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Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n + m).
If m is O(n) then running time is Ω(n log n).

Question
Is there a linear time (O(m + n) time) algorithm for MST?

1 O(m log∗m) time [Fredman, Tarjan 1987]
2 O(m + n) time using bit operations in RAM model [Fredman,

Willard 1994]
3 O(m + n) expected time (randomized algorithm) [Karger,

Klein, Tarjan 1995]
4 O((n + m)α(m, n)) time Chazelle 2000]
5 Still open: Is there an O(n + m) time deterministic algorithm

in the comparison model?
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