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Turing machines...

TM = Turing machine = program.
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Undecidability

Definition 1

Language L C X* is undecidable if no program P, given w € X* as
input, can always stop and output whether w € L or w & L.

(Usually defined using T'M not programs. But equivalent.
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Undecidability

Definition 1
Language L C X* is undecidable if no program P, given w € X* as

...always stop..

output whether w € L or w ¢ L.

(Usually defined using TM not programs. But equivalent.

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3/32



The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M, w) ’ M is a TM and M accepts m} .
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The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M, w) ’ M is a TM and M accepts W} .

Definition 2

A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w € X* whether or not
w e L.

A language that has a decider is decidable.
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The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

LAy = {(M, w) ’ M is a TM and M accepts W} .

Definition 2

A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w € X* whether or not
w € L.

A language that has a decider is decidable.
Turing proved the following:

A\ Iis undecidable. \
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The following language is undecidable

Ay = {(M, w) ‘ M is a TM and M accepts W} .
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Part |

Reductions
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Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A = B.
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Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A = B.

Definition 4

oracle ORAC for language L is a function that receives as a word
w, returns TRUE <— w € L.

Chan, Har-Peled, Hassanieh (UIUC) Spring 2019 7/32



Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A = B.

oracle ORAC for language L is a function that receives as a word
w, returns TRUE <— w € L.

v

A language X reduces to a language Y, if one can construct a TM
decider for X using a given oracle ORACy for Y.
We will denote this fact by X = Y.
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Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
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@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.
© L: language of B.
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Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.
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Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.
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Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.
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@ Contradiction A is not decidable.

Chan, Har-Peled, Hassanieh (UIUC) Spring 2019 8 /32



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.
@ Result in decider for A (i.e., Atyp).

@ Contradiction A is not decidable.

@ Thus, L must be not decidable.
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Reduction implies decidability

Let X and Y be two languages, and assume that X —> Y. If Y
is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces
to Y, it follows that there is a procedure Tx|y (i.e., decider) for X
that uses an oracle for Y as a subroutine. We replace the calls to
this oracle in Tx|y by calls to T. The resulting program Tx is a
decider and its language is X. Thus X is decidable (or more formally
TM decidable). O

o’
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The countrapositive...

Let X and Y be two languages, and assume that X —> Y. If X
is undecidable then Y is undecidable.
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Part 1l

Halting
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The halting problem

Language of all pairs (M, w) such that M halts on w:

Aol = {<M’_ﬂ’> ‘ M is a TM and M stops on w} .
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The halting problem

Language of all pairs (M, w) such that M halts on w:

Aol = {(M, w) ‘ M is a TM and M stops on w} .

Similar to language already known to be undecidable:

Ay = {(M, w) ‘ M is a TM and M accepts v_v} .
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On way to proving that Halting is undecidable...

Lemma 8

The language A\ reduces to Agai,. Namely, given an oracle for
Agare one can build a decider (that uses this oracle) for Ary;.
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One way to proving that Halting is undecidable...

Proof of lemma

Let/ORACHa,t be the given oracle for Aga;;. We build the following
decider for Ary.

vy
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One way to proving that Halting is undecidable...

Proof of lemma

Let ORAC,;: be the given oracle for Aga;;. We build the following
decider for Ary.

Decider-ATM((M, w>)
res <+ ORACHa,t<(M,_vy)>
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One way to proving that Halting is undecidable...

Proof of lemma

Let ORAC,;: be the given oracle for Aga;;. We build the following
decider for Ary.

Decider-ATM((M, w>)

res < ORACHa/t<(M, W))

// if M does not halt on w then reject.
if res = reject then
halt and reject.

vy
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One way to proving that Halting is undecidable...

Proof of lemma

Let ORAC,;: be the given oracle for Aga;;. We build the following
decider for Ary.

\CLDecider-ATM((M, w>)
res (—-AJ)RACHa,t<(M, W>)

// if M does not halt on w then reject.
if res = reject then
halt and reject.
—// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <Simulate M on w &—
—~return res; .

This procedure always return and as such its a decider for Ay, [l
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The Halting problem is not decidable

Theorem 9
The language Agays is not decidable.

Proof.

Assume, for the sake of contradiction, that Agagt is decidable. As
such, there is a TM, denoted by T' Mg, that is a decider for
Agnaie. We can use TMyay; as an implementation of an oracle for
Agait, Which would imply by Lemma 8 that one can build a decider
for Aryn. However, Ay is undecidable. A contradiction. It must be
that Agai is undecidable. ]

v
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The same proof by figure...

Turing machine for Agpm

accept | accept

»

accept | Simulate M
on w >
reject | reject

(M, w) (M, w)

»

reject reject o

. if Agaye is decidable, then Ay is decidable, which is impossible.
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Part |11

Emptiness
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The language of empty languages

M (%)
o ETM={<M> )MisaTM and L(M):Q)}, Lgmace X
I"cc'cu

Ty = &
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The language of empty languages

R Eny={(M) )M sa TM and L(M) =0 }.
@ TMegrym: Assume we are given this decider for Eryy.
© Need to use TMEggpy to build a decider for Atyy.

@ Decider for Aty is given M and w and must decide whether M
accepts w.

Spring 2019 18 / 32
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The language of empty languages

B Eru={(M) [MisaTMand L(M) =0}
@ TMegrym: Assume we are given this decider for Eryy.
© Need to use TMEggpy to build a decider for Atyy.
Q Decider for Aqy; is given M and w and must decide whether M
accepts w.
Q ldea: hard—codeﬂ/ into M, creating a TM %V which runs M
on the fixed string w.
Q TM M,,:
- input =@(which will be ignored)
@ Simulate M on .

7@ |If the simulation accepts, accept. If the simulation rejects,
reject.
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Embedding strings...

@ Given program (M) and input w...
@ ...can output a program (M,,).
© The program M, simulates M on w. And accepts/rejects
accordingly.
_7@ EmbedString({M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).
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Embedding strings...

@ Given program (M) and input w...

@ ...can output a program (M,,).

© The program M, simulates M on w. And accepts/rejects
accordingly.

© EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

@ What is \H\Mll?
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Embedding strings...

@ Given program (M) and input w...

@ ...can output a program (M,,).

© The program M, simulates M on w. And accepts/rejects
accordingly.

© EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

@ What is L(M,,)?

@ Since M,, ignores input x.. language M,, is either X* or (.
It is £* if M accepts w, and it is_@ if M does not accept w.
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Emptiness is undecidable

Theorem 10
The language Er\; is undecidable.

© Assume (for contradiction), that Er); is decidable.
@ TMegrm be its decider.

© Build decider AnotherDecider-A 1y for Ary:

_pAnotherDecider-Aru((M, w))

(M) < EmbedString ((M, w))

L+ TMerm({My)).

if r = accept then 3£ Mu cjeds Migped
return reject doLm) =g

// TMgrm({M,,)) rejected its input
return accept
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Emptiness is undecidable...

Proof continued

Consider the possible behavior of AnotherDecider-Aty on the
input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1y
rejects its input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is not empty. This

implies that M accepts w. So AnotherDecider-A -ty accepts
(M, w).
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Emptiness is undecidable...

Proof continued

Consider the possible behavior of AnotherDecider-Aty on the
input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1y
rejects its input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is not empty. This
implies that M accepts w. So AnotherDecider-A -ty accepts
(M, w).

— AnotherDecider-A1y is decider for Ary;.
But Aty is undecidable...
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Emptiness is undecidable...

Proof continued

Consider the possible behavior of AnotherDecider-Aty on the
input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1y
rejects its input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is not empty. This
implies that M accepts w. So AnotherDecider-A -ty accepts
(M, w).

— AnotherDecider-A1y is decider for Ary;.
But Aty is undecidable...
...must be assumption that Er); is decidable is false. [
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Emptiness is undecidable via diagram

AnotherDecider-A1\

accept accept
M >

EmbedString | (A T™ery 7
Ltm,) Mg reject Teject™

AnotherDecider- Ay never actually runs the code for M,,. It
hands the code to a function TMEgrp which analyzes what the code

would do if run it. So it does not matter that M,, might go into an
infinite loop.
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Part |V

Equality
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Equality is undecidable

EQ, = {w ‘ M and N are TM’s and L(M) = L(N)} .

7

The language EQr\; is undecidable. \
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Proof

Suppose that we had a decider DeciderEqual for EQry;. Then we
can build a decider for Ety; as follows:

_A—

TM R:

Q Input = (M) L(ﬁ=¢

@ Include the (constant) code for a TM@that rejects all its
input. We denote the string encoding T by (T).

© Run DeciderEgual on (M, T). L) =2 L(T)

© If DeciderEqual accepts, then accept. Lim) =¢

@ If DeciderEqual rejects, then reject.  L.(m)+ ¢
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Part V

Regularity

Chan, Har-Peled, Hassanieh (UIUC) Spring 2019 26 / 32



Many undecidable languages

© Almost any property defining a TM language induces a
language which is undecidable.

@ proofs all have the same basic pattern.
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Many undecidable languages

© Almost any property defining a TM language induces a
language which is undecidable.

@ proofs all have the same basic pattern.

© Regularity language:
__»Regular = {(M) ‘ M is a TM and L_ii) is regular} .
@ DeciderReglL: Assume TM decider for Regular ;.

© Reduction from halting requires to turn problem about deciding
whether a TM M accepts w (i.e., is w € Ar)) into a problem
about whether some T'M accepts a regular set of strings.
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Proof continued...

@ Given M and w, consider the following TM M:V:
2D
™ M. :

(i) Input = x_
(ii) If x has the form a"b", halt and accept.
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Proof continued...

@ Given M and w, consider the following TM M:V:
™ M. :
(i) Input = x
(ii) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.””
(v) If the simulation rejects, then reject. ¥

A*""Jn\“& s o decdu tak Cae kR wme '? L Mw} mﬂﬁ

1)
1)
)
)

Chan, Har-Peled, Hassanieh (UIUC) Spring 2019 28 / 32































































































































































Proof continued...

@ Given M and w, consider the following TM M:V:
™ M. :
(i) Input = x
(ii) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

not executing M/ |
Q feed string (M,) into DeciderRegL
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Proof continued...

@ Given M and w, consider the following TM M:V:
/.
™ M, 4 m accegin
(i) Input = x. 2,»;
/P(II) If x has the form a”b", halt and accepte” /V\w '”C‘(’(’ T\,w?.,
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then acceptv” ' f M re) ek sw
(v) If the simulation rejects, then reject. My ac “1’,‘ o
@ not executing M/ | fequ
Q feed string (M,) into DeciderRegL
Q@ EmbedRegularString: program with input (M) and w, and
outputs (M ), encoding the program M.
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Proof continued...

@ Given M and w, consider the following TM M:V:
™ M. :
(i) Input = x
(ii) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.
@ not executing M/ |
Q feed string (M,) into DeciderRegL
© EmbedRegularString: program with input (M) and w, and
outputs (M ), encoding the program M.
@ If M accepts w, then any x accepted by M!: L(M!) = s+
@ If M does not accept w, then L(M’) = {a"b" | n > 0}.2<
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Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.
© A decider for A1y as follows.
_» YetAnotherDecider-Atm({(MM, w))

(M!) <+ EmbedRegularString ((M, w))

r < DeciderReglL ((M},)) .accs!

return r.
O If DeciderReglL accepts = L(M,,) regular (its )
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Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.
© A decider for A1y as follows.
YetAnotherDecider-Atn({(M, w))
(M) < EmbedRegularString ((M, w))
r « DeciderRegL ({M.)).
return r
@ If DeciderRegl accepts = L(M.) regular (its ¥*) —
M accepts w. So YetAnotherDecider-A 1y should accept
(M, w).
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Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.
© A decider for A1y as follows.
YetAnotherDecider-Atn({(M, w))
(M) < EmbedRegularString ((M, w))
r « DeciderRegL ({M.)).
return r
@ If DeciderRegl accepts = L(M.) regular (its ¥*) —
M accepts w. So YetAnotherDecider-A 1y should accept
(M, w).
@ If DecideyReglL rejects = L(M.)) is not regular =—>
L(M!) = a"b"
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Proof continued...

a"b"is not regular...
Use DeciderRegl on M/ to distinguish these two cases.
Note - cooked M! to the decider at hand.
A decider for A1y as follows.
YetAnotherDecider-Atm({M, w))
_4M! ) < EmbedRegularString ((M, w))
r + DeciderRegl (M)
return r
@ If DeciderRegl accepts = L(M.) regular (its ¥*) —
M accepts w. So YetAnotherDecider-A 1y should accept
(M, w).
@ If DeciderReglL rejects = L(M!)) is not regular =—>
L(M,) = a"b" == M does not accept w ==
YetAnotherDecider- Aty should reject (M, w).
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Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word
in L encodes a TM. Furthermore, assume that the following two
properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then (M) € L < (N) € L.

(b) The set L is “non-trivial,” i.e. L # @ and L_does not contain all
Turing machines.

Then L is a undecidable.
jﬁ= {4M> ‘ L(M) L\.‘\S a Q(‘oeqbeg 4
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