Algorithms & Models of Computation CS/ECE 374, Spring 2019

Undecidability II: More problems via reductions

Lecture 21 Thursday, April 4, 2019

LATEXed: April 11, 2019 14:43

Turing machines...

TM = Turing machine = program.

Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using $\mathbf{T}\mathbf{M}$ not programs. But equivalent.

Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \underline{M}, \underline{w} \rangle \mid M \text{ is a TM and } \underline{M} \text{ accepts } \underline{w} \right\}.$$

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$$

Definition 2

A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

 $\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$

Definition 2

A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**. Turing proved the following:

Theorem 3 A_{TM} is undecidable.

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$
Assume there is a program Decide-Arm (, w)
 & Arm or & Arm if M occepts w
+ Mbad:
Input:
If Decide-Arm (,) accepts
rejects
else
Contradic fron [
>Decide-Arm (M_{bad} reject
Decide-Arm (M_{bad} accepts
>Decide-Arm (M_{bad} accepts
>Decide -Arm (M_{bad}? rejects M_{bad}?
Decide -Arm (M_{bad}? rejects M_{bad}?
Decide -Arm (

Part I

Reductions

Reduction

Meta definition: Problem <u>A</u> reduces to problem <u>B</u>, if given a solution to B, then it implies a solution for A. Namely, we can solve B then we can solve A. We will denote this by $A \implies B$.

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Definition 5

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y. We will denote this fact by $X \implies Y$.

O B: Problem/language for which we want to prove undecidable.

- **O** B: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Solution Create a decider for known undecidable problem A using M.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Screate a decider for known undecidable problem A using M.
- **O** Result in decider for **A** (i.e., A_{TM}).

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Screate a decider for known undecidable problem A using M.
- **O** Result in decider for **A** (i.e., A_{TM}).
- Ontradiction A is not decidable.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Screate a decider for known undecidable problem A using M.
- Result in decider for A (i.e., A_{TM}).
- Ontradiction A is not decidable.
- Thus, L must be not decidable.

Lemma 6

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for Xthat uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

The countrapositive...

Lemma 7

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.

Part II

Halting

The halting problem

Language of all pairs $\langle M, w \rangle$ such that *M* halts on *w*:

$$\boldsymbol{A}_{\text{Halt}} = \left\{ \langle \underline{\boldsymbol{M}}, \underline{\boldsymbol{w}} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ stops on } \boldsymbol{w} \right\}.$$

The halting problem

Language of all pairs $\langle M, w \rangle$ such that **M** halts on w:

$$A_{\mathrm{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } \underline{w}
ight\}.$$

Similar to language already known to be undecidable:

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w
angle \; \Big| \; M \; \text{is a TM and} \; M \; ext{accepts} \; \underline{w}
ight\}.$$

On way to proving that Halting is undecidable...

Lemma 8

The language A_{TM} reduces to A_{Halt} . Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM} .

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

 $\begin{array}{l} \textbf{Decider-} \mathbf{A}_{\mathsf{TM}} \Big(\langle \boldsymbol{M}, \boldsymbol{w} \rangle \Big) \\ \boldsymbol{\textit{res}} \leftarrow \mathsf{ORAC}_{\textit{Halt}} \Big(\langle \boldsymbol{\underline{M}}, \boldsymbol{\underline{w}} \rangle \Big) \end{array}$

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

```
Decider-A_{\mathsf{TM}}(\langle M, w \rangle)

res \leftarrow \mathsf{ORAC}_{Halt}(\langle M, w \rangle)

// if M does not halt on w then reject.

if res = reject then

halt and reject.
```

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

Decider-A_{TM}(⟨M, w⟩)
 res ← ORAC_{Halt}(⟨M, w⟩)
 // if M does not halt on w then reject.
 if res = reject then
 halt and reject.
 // M halts on w since res =accept.
 // Simulating M on w terminates in finite time.
 res₂ ← Simulate M on w.←
 -return res₂.

This procedure always return and as such its a decider for A_{TM} .

The Halting problem is not decidable

Theorem 9

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt} , that is a decider for A_{Halt} . We can use TM_{Halt} as an implementation of an oracle for A_{Halt} , which would imply by Lemma 8 that one can build a decider for A_{TM} . However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable.

The same proof by figure...

... if \textbf{A}_{Halt} is decidable, then \mathbf{A}_{TM} is decidable, which is impossible.

Part III

Emptiness

The language of empty languages

•
$$E_{\mathrm{TM}} = \left\{ \langle M \rangle \mid M \text{ is a } \mathrm{TM} \text{ and } L(M) = \emptyset \right\}.$$

The language of empty languages

$$\mathbf{\mathcal{A}} \ \ \mathbf{\mathcal{E}}_{\mathrm{TM}} = \left\{ \langle M \rangle \ \ \, \middle| \ M \ \, \text{is a TM and} \ \ \mathbf{\mathcal{L}}(M) = \emptyset \right\}.$$

- **2** TM_{ETM} : Assume we are given this decider for E_{TM} .
- 3 Need to use TM_{ETM} to build a decider for A_{TM} .
- 3 Decider for A_{TM} is given M and \underline{w} and must decide whether M accepts w.

The language of empty languages

$$\mathfrak{Q} \, \underbrace{\mathsf{E}}_{\mathrm{TM}} = \left\{ \langle M \rangle \, \middle| \, M \text{ is a TM and } L(M) = \emptyset \right\}.$$

- **2** TM_{ETM} : Assume we are given this decider for E_{TM} .
- **3** Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for $\underline{A_{TM}}$ is given M and w and must decide whether M accepts w.
- Solution like the string M into M, creating a TM M_w which runs M on the fixed string w.
- TM <u>M</u>.:
 - $\rightarrow 0$ Input = \bigotimes (which will be ignored)
 - Simulate <u>M</u> on <u>w</u>.
 - If the simulation accepts, accept. If the simulation rejects, reject.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- \odot ... can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle \underline{M}, \underline{w} \rangle$) input two strings $\langle \underline{M} \rangle$ and w, and output a string encoding (TM) $\langle \underline{M}_{\underline{w}} \rangle$.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- \odot ... can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is <u>L(M_w)</u>?

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- 2 ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?
- Since M_w ignores input x.. language M_w is either Σ* or Ø.
 It is Σ* if M accepts w, and it is Ø if M does not accept w.

Emptiness is undecidable

Theorem 10

The language $E_{\rm TM}$ is undecidable.

- **(**) Assume (for contradiction), that E_{TM} is decidable.
- TM_{ETM} be its decider.
- **3** Build decider AnotherDecider- A_{TM} for A_{TM} :

AnotherDecider-
$$A_{TM}(\langle \underline{M}, \underline{w} \rangle)$$

 $\langle \underline{M}_{w} \rangle \leftarrow \text{EmbedString}(\langle \underline{M}, w \rangle)$
 $\underline{r} \leftarrow \underline{TM}_{ETM}(\langle \underline{M}_{w} \rangle).$
if $r = \text{accept then } \text{if } M_{w} \text{ cjcds } M_{ippel}^{\dagger}$
return reject $\stackrel{\text{if } L}{L}(M_{w}) = \emptyset$
 $// TM_{ETM}(\langle M_{w} \rangle)$ rejected its input
return accept

Emptiness is undecidable... Proof continued

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, AnotherDecider-A_{TM} rejects its input $\langle M, w \rangle$.
- If *TM_{ETM}* accepts ⟨*M_w*⟩, then *L(M_w*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A_{TM} accepts ⟨*M*, *w*⟩.

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If *TM_{ETM}* accepts (*M_w*), then *L*(*M_w*) is empty. This implies that *M* does not accept *w*. As such, AnotherDecider-A_{TM} rejects its input (*M*, *w*).
- If *TM_{ETM}* accepts ⟨*M_w*⟩, then *L*(*M_w*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A_{TM} accepts ⟨*M*, *w*⟩.
- \implies AnotherDecider-A_{TM} is decider for A_{TM}.

But \mathbf{A}_{TM} is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If *TM_{ETM}* accepts (*M_w*), then *L*(*M_w*) is empty. This implies that *M* does not accept *w*. As such, AnotherDecider-A_{TM} rejects its input (*M*, *w*).
- If *TM_{ETM}* accepts ⟨*M_w*⟩, then *L*(*M_w*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A_{TM} accepts ⟨*M*, *w*⟩.

\implies AnotherDecider-A_{TM} is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that $\boldsymbol{E}_{\mathrm{TM}}$ is decidable is false.

Emptiness is undecidable via diagram

AnotherDecider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.

Part IV

Equality

$$\mathbf{E}\mathbf{Q}_{\mathrm{TM}} = \left\{ \langle \underline{M}, \underline{N} \rangle \mid M \text{ and } N \text{ are TM's and } \underline{L}(\underline{M}) = \underline{L}(\underline{N}) \right\}.$$

Lemma 11

The language EQ_{TM} is undecidable.

Proof

Proof.

Suppose that we had a decider **DeciderEqual** for EQ_{TM} . Then we can build a decider for \underline{E}_{TM} as follows:

TM **R**:

- S Run DeciderEqual on $\langle M, T \rangle$. 4 M = ? L(T)
- If DeciderEqual accepts, then accept. $L(M) = \phi$
- S If DeciderEqual rejects, then reject. $L(M) \neq \phi$

$\mathsf{Part}\ \mathsf{V}$

Regularity

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- oppose proofs all have the same basic pattern.
- 8 Regularity language:

 $\mathbf{\mathcal{F}Regular}_{\mathrm{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } \mathcal{L}(M) \text{ is regular} \right\}.$

- **Operator** DeciderRegL: Assume TM decider for $Regular_{TM}$.
- Seduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is w ∈ A_{TM}) into a problem about whether some TM accepts a regular set of strings.

- Given M and w, consider the following $TM \underbrace{M'_{w}}_{W'}$: TM M'_{w} :
 - (i) Input = \underline{x}
 - (ii) If \underline{x} has the form $\underline{a^n b^n}$, halt and accept.

- Given M and w, consider the following TM M'_w : TM M'_w :
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate <u>M</u> on <u>w</u>.
 - (iv) If the simulation accepts, then accept \checkmark
 - (v) If the simulation rejects, then reject. \ltimes

Assume there is a decider that can tell me if L (Min) is reg.

- Given *M* and *w*, consider the following TM *M'_w*: TM *M'_w*:
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate **M** on **w**.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- <u>not</u> executing M'_w!
 - **③** feed string $\langle M'_w
 angle$ into **DeciderRegL**

- Given M and w, consider the following TM M'_w : TM M'_w :
 - (i) Input = x(ii) If x has the form $a^n b^n$, halt and accept M_w a ccept z^* f_{nyn} (iii) Otherwise, simulate M on w.
 - (iv) If the simulation accepts, then accept / if M cjedsw
 - (v) If the simulation rejects, then reject.
- Inot executing M'_w!
- **③** feed string $\langle M'_w
 angle$ into **DeciderRegL**
- EmbedRegularString: program with input $\langle \underline{M} \rangle$ and \underline{w} , and outputs $\langle \underline{M'_w} \rangle$, encoding the program $\underline{M'_w}$.

M'w accept ab

- Given *M* and *w*, consider the following TM *M'_w*: TM *M'_w*:
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate <u>M</u>on <u>w</u>.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- Inot executing M'_w!
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .
- So If M accepts w, then any x accepted by M'_w : $L(M'_w) = \Sigma^*$

• If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \ge 0\}$.

- **a** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_w to the decider at hand.

• A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle \underline{M}, \underline{w} \rangle)$ $\langle \underline{M}'_w \rangle \leftarrow \text{EmbedRegularString}(\langle \underline{M}, w \rangle)$ $\underline{r} \leftarrow \text{DeciderRegL}(\langle \underline{M}'_w \rangle)$.

• If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*)

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$. return r
- **5** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So **YetAnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$. return r
- **5** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts ψ . So **YetAnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.
- If DeciderRegL rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_w to distinguish these two cases.
- Solution Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ • $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ • $r \leftarrow \underline{\text{DeciderRegL}}(\langle M'_w \rangle)$. • return r
- **5** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So **YetAnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n \implies M$ does not accept $w \implies$ YetAnotherDecider-A_{TM} should reject $\langle M, w \rangle$.

The above proofs were somewhat repetitious... ...they imply a more general result.

Theorem 12 (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.

Rice theorem

Rice theorem