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Turing machines...

TM = Turing machine = program.
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Undecidability

Definition 1
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗ as
input, can always stop and output whether w ∈ L or w /∈ L.

(Usually defined using TM not programs. But equivalent.
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The following language is undecidable

Decide if given a program M , and an input w , does M accepts w .
Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition 2
A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w ∈ Σ∗ whether or not
w ∈ L.

A language that has a decider is decidable.
Turing proved the following:

Theorem 3
ATM is undecidable.
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Part I

Reductions
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Reduction

Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A =⇒ B.

Definition 4
oracle ORAC for language L is a function that receives as a word
w , returns TRUE ⇐⇒ w ∈ L.

Definition 5
A language X reduces to a language Y , if one can construct a TM
decider for X using a given oracle ORACY for Y .
We will denote this fact by X =⇒ Y .
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Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 32



Reduction implies decidability

Lemma 6
Let X and Y be two languages, and assume that X =⇒ Y . If Y
is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces
to Y , it follows that there is a procedure TX |Y (i.e., decider) for X
that uses an oracle for Y as a subroutine. We replace the calls to
this oracle in TX |Y by calls to T. The resulting program TX is a
decider and its language is X . Thus X is decidable (or more formally
TM decidable).
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The countrapositive...

Lemma 7
Let X and Y be two languages, and assume that X =⇒ Y . If X
is undecidable then Y is undecidable.
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Part II

Halting
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The halting problem

Language of all pairs 〈M,w〉 such that M halts on w :

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.
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On way to proving that Halting is undecidable...

Lemma 8

The language ATM reduces to AHalt. Namely, given an oracle for
AHalt one can build a decider (that uses this oracle) for ATM.
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One way to proving that Halting is undecidable...
Proof of lemma

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following
decider for ATM.

Decider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.
// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for ATM.
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The Halting problem is not decidable

Theorem 9
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable. As
such, there is a TM, denoted by TMHalt, that is a decider for
AHalt. We can use TMHalt as an implementation of an oracle for
AHalt, which would imply by Lemma 8 that one can build a decider
for ATM. However, ATM is undecidable. A contradiction. It must be
that AHalt is undecidable.
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The same proof by figure...

〈M,w〉 〈M,w〉
TMHalt

Simulate M
on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

... if AHalt is decidable, then ATM is decidable, which is impossible.
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Part III

Emptiness
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The language of empty languages

1 ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

2 TMETM : Assume we are given this decider for ETM.

3 Need to use TMETM to build a decider for ATM.

4 Decider for ATM is given M and w and must decide whether M
accepts w .

5 Idea: hard-code w into M , creating a TM Mw which runs M
on the fixed string w .

6 TM Mw :
1 Input = x (which will be ignored)
2 Simulate M on w .
3 If the simulation accepts, accept. If the simulation rejects,

reject.

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 32




















































































The language of empty languages

1 ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

2 TMETM : Assume we are given this decider for ETM.

3 Need to use TMETM to build a decider for ATM.

4 Decider for ATM is given M and w and must decide whether M
accepts w .

5 Idea: hard-code w into M , creating a TM Mw which runs M
on the fixed string w .

6 TM Mw :
1 Input = x (which will be ignored)
2 Simulate M on w .
3 If the simulation accepts, accept. If the simulation rejects,

reject.

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 32









The language of empty languages

1 ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

2 TMETM : Assume we are given this decider for ETM.

3 Need to use TMETM to build a decider for ATM.

4 Decider for ATM is given M and w and must decide whether M
accepts w .

5 Idea: hard-code w into M , creating a TM Mw which runs M
on the fixed string w .

6 TM Mw :
1 Input = x (which will be ignored)
2 Simulate M on w .
3 If the simulation accepts, accept. If the simulation rejects,

reject.

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 32














































































Embedding strings...

1 Given program 〈M〉 and input w ...

2 ...can output a program 〈Mw〉.
3 The program Mw simulates M on w . And accepts/rejects

accordingly.

4 EmbedString(〈M,w〉) input two strings 〈M〉 and w , and
output a string encoding (TM) 〈Mw〉.

5 What is L(Mw)?

6 Since Mw ignores input x .. language Mw is either Σ∗ or ∅.
It is Σ∗ if M accepts w , and it is ∅ if M does not accept w .
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Emptiness is undecidable

Theorem 10
The language ETM is undecidable.

1 Assume (for contradiction), that ETM is decidable.

2 TMETM be its decider.

3 Build decider AnotherDecider-ATM for ATM:

AnotherDecider-ATM(〈M,w〉)
〈Mw〉 ← EmbedString (〈M,w〉)
r ← TMETM(〈Mw〉).
if r = accept then

return reject
// TMETM(〈Mw〉) rejected its input

return accept
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Emptiness is undecidable...
Proof continued

Consider the possible behavior of AnotherDecider-ATM on the
input 〈M,w〉.

If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies
that M does not accept w . As such, AnotherDecider-ATM

rejects its input 〈M,w〉.
If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This
implies that M accepts w . So AnotherDecider-ATM accepts
〈M,w〉.

=⇒ AnotherDecider-ATM is decider for ATM.
But ATM is undecidable...
...must be assumption that ETM is decidable is false.
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Emptiness is undecidable via diagram

〈M,w〉
EmbedString

accept

reject

accept

reject

AnotherDecider-ATM

〈Mw〉 TMETM

AnotherDecider-ATM never actually runs the code for Mw . It
hands the code to a function TMETM which analyzes what the code
would do if run it. So it does not matter that Mw might go into an
infinite loop.
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Part IV

Equality
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Equality is undecidable

EQTM =
{
〈M,N〉

∣∣∣M and N are TM’s and L(M) = L(N)
}
.

Lemma 11
The language EQTM is undecidable.
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Proof

Proof.
Suppose that we had a decider DeciderEqual for EQTM. Then we
can build a decider for ETM as follows:

TM R:

1 Input = 〈M〉
2 Include the (constant) code for a TM T that rejects all its

input. We denote the string encoding T by 〈T〉.
3 Run DeciderEqual on 〈M,T〉.
4 If DeciderEqual accepts, then accept.
5 If DeciderEqual rejects, then reject.
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Part V

Regularity
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Many undecidable languages

1 Almost any property defining a TM language induces a
language which is undecidable.

2 proofs all have the same basic pattern.

3 Regularity language:

RegularTM =
{
〈M〉

∣∣∣M is a TM and L(M) is regular
}
.

4 DeciderRegL: Assume TM decider for RegularTM.

5 Reduction from halting requires to turn problem about deciding
whether a TM M accepts w (i.e., is w ∈ ATM) into a problem
about whether some TM accepts a regular set of strings.
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Proof continued...

1 Given M and w , consider the following TM M ′w :

TM M ′w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.

(iii) Otherwise, simulate M on w .
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 not executing M ′w !

3 feed string
〈
M ′w

〉
into DeciderRegL

4 EmbedRegularString: program with input 〈M〉 and w , and
outputs

〈
M ′w

〉
, encoding the program M ′w .

5 If M accepts w , then any x accepted by M ′w : L(M ′w) = Σ∗.

6 If M does not accept w , then L(M ′w) = {anbn | n ≥ 0}.
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Proof continued...

1 anbn is not regular...
2 Use DeciderRegL on M ′w to distinguish these two cases.
3 Note - cooked M ′w to the decider at hand.
4 A decider for ATM as follows.

YetAnotherDecider-ATM(〈M,w〉)〈
M ′w

〉
← EmbedRegularString (〈M,w〉)

r ← DeciderRegL
(〈

M ′w
〉)

.
return r

5 If DeciderRegL accepts =⇒ L(M ′w) regular (its Σ∗)

=⇒
M accepts w . So YetAnotherDecider-ATM should accept
〈M,w〉.

6 If DeciderRegL rejects =⇒ L(M ′w) is not regular =⇒
L(M ′w) = anbn =⇒ M does not accept w =⇒
YetAnotherDecider-ATM should reject 〈M,w〉.
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Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word
in L encodes a TM. Furthermore, assume that the following two
properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then 〈M〉 ∈ L⇔ 〈N〉 ∈ L.

(b) The set L is “non-trivial,” i.e. L 6= ∅ and L does not contain all
Turing machines.

Then L is a undecidable.
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