Algorithms \& Models of Computation

 CS/ECE 374, Spring 2019
Breadth First Search, Dijkstra's Algorithm for Shortest Paths

Lecture 17
Tuesday, March 19, 2019

Part I

Breadth First Search

Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a queue data structure.
(B) It processes the vertices in the graph in the order of their shortest distance from the vertex \boldsymbol{s} (the start vertex).

As such...

(1) DFS good for exploring graph structure
(2) BFS good for exploring distances

xkcd take on DFS

DA) a) CORN SNAKE DANGER

 THE RESEARCH COMPARING SNAKE VENOMS IS SCATIDRED AND WCONSISTENT. ILL MAKE A SPREADSHEET TO ORGANIEE IT.

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

Queue Data Structure

Queues

A queue is a list of elements which supports the operations:
(1) enqueue: Adds an element to the end of the list
(2) dequeue: Removes an element from the front of the list Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.

BFS Algorithm

Given (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and node $\boldsymbol{s} \in \boldsymbol{V}$

BFS(s)

```
Mark all vertices as unvisited
Initialize search tree T to be empty
    Mark vertex s as visited
    set Q to be the empty queue
    enqueue( }Q,s
    while Q is nonempty do
        u= dequeue(Q)
        for each vertex v \in Adj(u)
        if v}\mathrm{ is not visited then
                add edge (u,v) to T
                Mark v as visited and enqueue(v)
```


Proposition

BFS(s) runs in $\mathbf{O}(\boldsymbol{n}+\boldsymbol{m})$ time .

BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
4. $[4,5,7,8]$
5. $[5,7,8]$
6.
[7,8,6]

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
4. $[4,5,7,8]$
5. $[5,7,8]$

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
4. $[4,5,7,8]$
5. $[5,7,8]$
6. $[7,8,6]$

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
4. $[4,5,7,8]$
7. $[8,6]$
5. $[5,7,8]$
6. $[7,8,6]$

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
4. $[4,5,7,8]$
7. $[8,6]$
5. $[5,7,8]$
8. [6]
6. $[7,8,6]$

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$
4. $[4,5,7,8]$
7. $[8,6]$
5. $[5,7,8]$
8. [6]
6. $[7,8,6]$
9. []

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 4. } & {[4,5,7,8]} \\ \text { 5. } & {[5,7,8]} \\ \text { 6. } & {[7,8,6]}\end{array}$
7. $[8,6]$
8. [6]
9. []

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 4. } & {[4,5,7,8]} \\ \text { 5. } & {[5,7,8]} \\ \text { 6. } & {[7,8,6]}\end{array}$
7. $[8,6]$
8. [6]
9. []

BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 4. } & {[4,5,7,8]} \\ \text { 5. } & {[5,7,8]} \\ \text { 6. } & {[7,8,6]}\end{array}$
7. $[8,6]$
8. [6]
9. []

BFS tree is the set of purple edges.

BFS: An Example in Directed Graphs

BFS with Distance

BFS(s)

Mark all vertices as unvisited; for each v set $\operatorname{dist}(v)=\infty$ Initialize search tree \boldsymbol{T} to be empty Mark vertex s as visited and set $\operatorname{dist}(s)=0$ set \boldsymbol{Q} to be the empty queue enqueue(s)
while \boldsymbol{Q} is nonempty do
$u=\operatorname{dequeue}(Q)$
for each vertex $v \in \operatorname{Adj}(u)$ do
if v is not visited do add edge $(\boldsymbol{u}, \boldsymbol{v})$ to \boldsymbol{T} Mark v as visited, enqueue (v) and set $\operatorname{dist}(\boldsymbol{v})=\operatorname{dist}(\boldsymbol{u})+\mathbf{1}$

Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the connected component of \boldsymbol{s}.
(B) If $\operatorname{dist}(\boldsymbol{u})<\operatorname{dist}(\boldsymbol{v})$ then \boldsymbol{u} is visited before \boldsymbol{v}.
(0) For every vertex $\boldsymbol{u}, \operatorname{dist}(\boldsymbol{u})$ is the length of a shortest path (in terms of number of edges) from \boldsymbol{s} to \boldsymbol{u}.
(D) If $\boldsymbol{u}, \boldsymbol{v}$ are in connected component of \boldsymbol{s} and $\boldsymbol{e}=\{\boldsymbol{u}, \boldsymbol{v}\}$ is an edge of \boldsymbol{G}, then $|\operatorname{dist}(\mathbf{u})-\operatorname{dist}(\mathbf{v})| \leq \mathbf{1}$.

Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable from s
(B) If $\operatorname{dist}(\mathbf{u})<\operatorname{dist}(\mathbf{v})$ then \boldsymbol{u} is visited before \boldsymbol{v}
(0) For every vertex $\mathbf{u}, \operatorname{dist}(\mathbf{u})$ is indeed the length of shortest path from \boldsymbol{s} to \boldsymbol{u}
(D) If \boldsymbol{u} is reachable from \boldsymbol{s} and $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is an edge of \boldsymbol{G}, then $\operatorname{dist}(v)-\operatorname{dist}(u) \leq 1$.
Not necessarily the case that $\operatorname{dist}(u)-\operatorname{dist}(v) \leq 1$.

BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize \boldsymbol{T} to be empty Mark s as visited and set $L_{0}=\{s\}$
$i=0$
while L_{i} is not empty do initialize \boldsymbol{L}_{i+1} to be an empty list for each \boldsymbol{u} in L_{i} do for each edge $(u, v) \in \operatorname{Adj}(u)$ do if v is not visited mark v as visited add $(\boldsymbol{u}, \boldsymbol{v})$ to tree \boldsymbol{T} add \boldsymbol{v} to $\boldsymbol{L}_{\boldsymbol{i + 1}}$

$$
i=i+1
$$

Running time: $O(n+m)$

BFS with Layers

BFSLayers(s) :
Mark all vertices as unvisited and initialize \boldsymbol{T} to be empty Mark s as visited and set $L_{0}=\{s\}$

$$
i=0
$$

while L_{i} is not empty do
initialize $\boldsymbol{L}_{\boldsymbol{i + 1}}$ to be an empty list
for each \boldsymbol{u} in $\boldsymbol{L}_{\boldsymbol{i}}$ do
for each edge $(u, v) \in \operatorname{Adj}(u)$ do
if v is not visited
mark v as visited
add $(\boldsymbol{u}, \boldsymbol{v})$ to tree \boldsymbol{T}
add \boldsymbol{v} to $\boldsymbol{L}_{\boldsymbol{i}+1}$

$$
i=i+1
$$

Running time: $O(n+m)$

Example

BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).
(1) BFSLayers(s) outputs a BFS tree
(2) L_{i} is the set of vertices at distance exactly \boldsymbol{i} from \boldsymbol{s}
(0) If \boldsymbol{G} is undirected, each edge $\boldsymbol{e}=\{\boldsymbol{u}, \boldsymbol{v}\}$ is one of three types:
(1) tree edge between two consecutive layers
(2) non-tree forward/backward edge between two consecutive layers
(3) non-tree cross-edge with both $\boldsymbol{u}, \boldsymbol{v}$ in same layer
(1) \Longrightarrow Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

Example

BFS with Layers: Properties

For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if \boldsymbol{G} is directed.
For each edge $\boldsymbol{e}=(\mathbf{u}, \boldsymbol{v})$ is one of four types:
(1) a tree edge between consecutive layers, $\boldsymbol{u} \in \boldsymbol{L}_{\boldsymbol{i}}, \boldsymbol{v} \in \boldsymbol{L}_{\boldsymbol{i + 1}}$ for some $\mathbf{i} \geq \mathbf{0}$
(2) a non-tree forward edge between consecutive layers
(3) a non-tree backward edge
(4) a cross-edge with both $\mathbf{u}, \boldsymbol{v}$ in same layer

Part II

Shortest Paths and Dijkstra's Algorithm

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths (or costs). For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(0) Find shortest paths for all pairs of nodes.

Many applications!

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths (or costs). For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(0) Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

(1) Single-Source Shortest Path Problems
(1) Input: A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(2) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(3) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem - how?
(1) Given undirected graph G, create a new directed graph G^{\prime} by replacing each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ in \boldsymbol{G} by $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$ in G^{\prime} (2) set $\ell(u, v)=\ell(v, u)=\ell(\{u, v\})$
(3) Exercise: show reduction works. Relies on non-negativity

Single-Source Shortest Paths:

Non-Negative Edge Lengths

(1) Single-Source Shortest Path Problems
(1) Input: A (undirected or directed) graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(2) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(3) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(2) (1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem - how?

Single-Source Shortest Paths:

Non-Negative Edge Lengths

(1) Single-Source Shortest Path Problems
(1) Input: A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(e)=\ell(u, v)$ is its length.
(2) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(3) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(2) (1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem - how?
(1) Given undirected graph \boldsymbol{G}, create a new directed graph \boldsymbol{G}^{\prime} by replacing each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ in \boldsymbol{G} by $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$ in \boldsymbol{G}^{\prime}.
(2) set $\ell(u, v)=\ell(v, u)=\ell(\{u, v\})$
(3) Exercise: show reduction works. Relies on non-negativity!

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1 .
© Run BFS(s) to get shortest path distances from s to all other nodes.

- $O(m+n)$ time algorithm.
(2) Special case: Suppose $\ell(e)$ is an integer for all e ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\boldsymbol{e})-1$ dummy nodes on \boldsymbol{e}.
(3) Let $L=\max _{e} \ell(e)$. New graph has $O(m L)$ edges and $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ nodes. BFS takes $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ time. Not efficient if L is large.

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1 .
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time algorithm.
(3) Special case: Suppose $\ell(e)$ is an integer for all e ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on \boldsymbol{e}.
© Let $L=\max _{e} \ell(e)$. New graph has $O(m L)$ edges and $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ nodes. BFS takes $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ time. Not efficient if L is large.

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time algorithm.
(2) Special case: Suppose $\ell(\boldsymbol{e})$ is an integer for all \boldsymbol{e} ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on e.
(3) Let $L=\max _{e} \ell(e)$. New graph has $\boldsymbol{O}(\boldsymbol{m L})$ edges and $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ nodes. BFS takes $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ time. Not efficient if L is large.

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+n)$ time algorithm.
(2) Special case: Suppose $\ell(\boldsymbol{e})$ is an integer for all \boldsymbol{e} ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\boldsymbol{e})-\mathbf{1}$ dummy nodes on \boldsymbol{e}.
(3) Let $L=$ max $_{e} \ell(e)$. New graph has $O(m L)$ edges and $\boldsymbol{O}(m L+n)$ nodes. BFS takes $\boldsymbol{O}(m L+n)$ time. Not efficient if L is large.

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1 .
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+n)$ time algorithm.
(2) Special case: Suppose $\ell(\boldsymbol{e})$ is an integer for all \boldsymbol{e} ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\boldsymbol{e})-\mathbf{1}$ dummy nodes on \boldsymbol{e}.
(3) Let $\boldsymbol{L}=\boldsymbol{m a x}_{\boldsymbol{e}} \boldsymbol{\ell}(\boldsymbol{e})$. New graph has $\boldsymbol{O}(\boldsymbol{m} L)$ edges and $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ nodes. BFS takes $\boldsymbol{O}(\boldsymbol{m L}+\boldsymbol{n})$ time. Not efficient if L is large.

Towards an algorithm

Why does BFS work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let \boldsymbol{G} be a directed graph with non-negative edge lengths. Let dist (s, v) denote the shortest path length from s to v. If $\boldsymbol{s}=\boldsymbol{v}_{0} \rightarrow \boldsymbol{v}_{1} \rightarrow \boldsymbol{v}_{2} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{i}$ is shortest path from s to v_{i} (2) $\operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{k}\right)$. Relies on non-neg edge lengths.

Proof:

Suppose not. Then for some $\boldsymbol{i}<\boldsymbol{k}$ there is a path \boldsymbol{P}^{\prime} from s to \boldsymbol{v}_{i} of length strictly less than that of $s=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{i}$. Then \boldsymbol{P}^{\prime} concatenated with $v_{i} \rightarrow v_{i+1} \ldots \rightarrow v_{k}$ contains a strictly shorter

Towards an algorithm

Why does BFS work?
 BFS(s) explores nodes in increasing distance from s

\square

Proof.

Sunnose not. Then for some $i<k$ there is a path P^{\prime} from s to v_{i} of length strictly less than that of $s=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{i}$. Then P^{\prime} $\begin{array}{ccccc}\text { concatenated with } v_{i} \longrightarrow v_{i+1} \ldots & \ldots & v_{k} \text { contains a strictly shorter } \\ \text { Chan, Har-Peled, Hassanieh (UIUC) } & \text { cs374 } & 21 & \text { Spring 2019 } 21 / 42\end{array}$

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma

Let \boldsymbol{G} be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$ denote the shortest path length from \boldsymbol{s} to \boldsymbol{v}. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) $\operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{k}}\right)$. Relies on non-neg edge lengths.

[^0]
Towards an algorithm

Lemma

Let \boldsymbol{G} be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$ denote the shortest path length from \boldsymbol{s} to \boldsymbol{v}.
If $\boldsymbol{s}=\boldsymbol{v}_{0} \rightarrow \boldsymbol{v}_{1} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\mathbf{k}}$ shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\mathbf{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $s=v_{0} \rightarrow \boldsymbol{v}_{1} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) $\operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\mathbf{k}}\right)$. Relies on non-neg edge lengths.

Proof.

Suppose not. Then for some $\boldsymbol{i}<\boldsymbol{k}$ there is a path \boldsymbol{P}^{\prime} from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$ of length strictly less than that of $\boldsymbol{s}=\boldsymbol{v}_{0} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$. Then \boldsymbol{P}^{\prime} concatenated with $\boldsymbol{v}_{\boldsymbol{i}} \rightarrow \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}} \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ contains a strictly shorter path to $\boldsymbol{v}_{\boldsymbol{k}}$ than $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$. For the second part, observe that edge lengths are non-negative.

A proof by picture

A proof by picture

A proof by picture

A Basic Strategy

Explore vertices in increasing order of distance from \boldsymbol{s} :
(For simplicity assume that nodes are at different distances from \boldsymbol{s} and that no edge has zero length)

```
Initialize for each node v, dist(s,v)=\infty
Initialize }X={s}\mathrm{ ,
for i=2 to |V| do
    (* Invariant: X contains the i-1 closest nodes to s *)
    Among nodes in }\boldsymbol{V}-\boldsymbol{X}\mathrm{ , find the node v that is the
        i'th closest to s
    Update dist(s,v)
    X=X\cup{v}
```

How can we implement the step in the for loop?

A Basic Strategy

Explore vertices in increasing order of distance from \boldsymbol{s} :
(For simplicity assume that nodes are at different distances from \boldsymbol{s} and that no edge has zero length)

```
Initialize for each node v, dist(s,v)=\infty
Initialize }X={s}\mathrm{ ,
for i=2 to |V| do
    (* Invariant: X contains the i-1 closest nodes to s *)
    Among nodes in }\boldsymbol{V}-\boldsymbol{X}\mathrm{ , find the node v that is the
        i'th closest to s
    Update dist(s,v)
    X=X\cup{v}
```

How can we implement the step in the for loop?

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.

What do we know about the ith closest node?
\square
Claim
Let \boldsymbol{P} be a shortest path from \boldsymbol{s} to \boldsymbol{v} where \boldsymbol{v} is the ith closest node.
Then, all intermediate nodes in \boldsymbol{P} belong to \boldsymbol{X}.
\square
Proof.
If \boldsymbol{P} had an intermediate node \boldsymbol{u} not in \boldsymbol{X} then \boldsymbol{u} will be closer to s than v. Implies v is not the i 'th closest node to s - recall that X already has the $\boldsymbol{i}-\mathbf{1}$ closest nodes.

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.

What do we know about the i th closest node?

Claim

Let \boldsymbol{P} be a shortest path from \boldsymbol{s} to \boldsymbol{v} where \boldsymbol{v} is the ith closest node. Then, all intermediate nodes in \boldsymbol{P} belong to \boldsymbol{X}.

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.

What do we know about the ith closest node?

Claim

Let \boldsymbol{P} be a shortest path from \boldsymbol{s} to \boldsymbol{v} where \boldsymbol{v} is the ith closest node. Then, all intermediate nodes in \boldsymbol{P} belong to \boldsymbol{X}.

Proof.

If \boldsymbol{P} had an intermediate node \boldsymbol{u} not in \boldsymbol{X} then \boldsymbol{u} will be closer to \boldsymbol{s} than \boldsymbol{v}. Implies \boldsymbol{v} is not the \boldsymbol{i} 'th closest node to \boldsymbol{s} - recall that \boldsymbol{X} already has the $\boldsymbol{i}-\mathbf{1}$ closest nodes.

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node

Corollary

The ith closest node is adjacent to \boldsymbol{X}.

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the \boldsymbol{i} th closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$ let $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$ be a shortest path from \boldsymbol{s} to \boldsymbol{u} using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ be the length of $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$

Lemma

If v is the ith closest node to s, then $\boldsymbol{d}^{\prime}(s, v)=\operatorname{dist}(s, v)$

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$ let $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$ be a shortest path from \boldsymbol{s} to \boldsymbol{u} using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ be the length of $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$

Observations: for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$,
(1) $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \leq \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ since we are constraining the paths
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$-Why?

Lemma

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the i th closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$ let $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$ be a shortest path from \boldsymbol{s} to \boldsymbol{u} using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ be the length of $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$

Observations: for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$,
(1) $\operatorname{dist}(s, u) \leq \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ since we are constraining the paths
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$-Why?

Lemma

If \boldsymbol{v} is the \boldsymbol{i} th closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Finding the ith closest node

Lemma

Given:
(1) \boldsymbol{X} : Set of $\boldsymbol{i} \mathbf{- 1}$ closest nodes to \boldsymbol{s}.
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$

If \boldsymbol{v} is an ith closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Proof.

Let \boldsymbol{v} be the \boldsymbol{i} th closest node to \boldsymbol{s}. Then there is a shortest path \boldsymbol{P} from \boldsymbol{s} to \boldsymbol{v} that contains only nodes in \boldsymbol{X} as intermediate nodes (see previous claim). Therefore $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Finding the ith closest node

Lemma

If \boldsymbol{v} is an ith closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Corollary

The \boldsymbol{i} th closest node to \boldsymbol{s} is the node $\mathbf{v} \in \boldsymbol{V}-\boldsymbol{X}$ such that $d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)$.

Proof.

For every node $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}, \operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \leq \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ and for the \boldsymbol{i} th closest node $\boldsymbol{v}, \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})$. Moreover, $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \geq \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$ for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$.

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, d^{\prime}(s, s)=0$
for $i=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i} \mathbf{- 1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let \boldsymbol{v} be such that $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ $\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, d^{\prime}(s, s)=0$
for $i=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i} \mathbf{- 1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let \boldsymbol{v} be such that $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Correctness: By induction on \boldsymbol{i} using previous lemmas.
(1) \boldsymbol{n} outer iterations. In each iteration, $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ for each \boldsymbol{u} by scanning all edges out of nodes in $\boldsymbol{X} ; \boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time/iteration.

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, d^{\prime}(s, s)=0$
for $i=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i} \mathbf{- 1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let \boldsymbol{v} be such that $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ $\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Correctness: By induction on \boldsymbol{i} using previous lemmas.
Running time:
(1) n outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by scanning all edges out of nodes in $X ; O(m+n)$ time/iteration.

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $\boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0}$
for $i=1$ to $|V|$ do
(* Invariant: \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s} *)
(* Invariant: $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ is shortest path distance from \boldsymbol{u} to \boldsymbol{s} using only \boldsymbol{X} as intermediate nodes*)
Let \boldsymbol{v} be such that $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ $\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node \boldsymbol{u} in $\boldsymbol{V}-\boldsymbol{X}$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Correctness: By induction on \boldsymbol{i} using previous lemmas.
Running time: $\boldsymbol{O}(\boldsymbol{n} \cdot(\boldsymbol{n}+\boldsymbol{m}))$ time.
(1) \boldsymbol{n} outer iterations. In each iteration, $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ for each \boldsymbol{u} by scanning all edges out of nodes in $\boldsymbol{X} ; \boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time/iteration.

Example: Dijkstra algorithm in action

Improved Algorithm

(1) Main work is to compute the $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ values in each iteration
(2) $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ changes from iteration \boldsymbol{i} to $\boldsymbol{i}+\mathbf{1}$ only because of the node \boldsymbol{v} that is added to \boldsymbol{X} in iteration \boldsymbol{i}.

```
Initialize for each node v, dist(s,v)= d'(s,v)=\infty
Initialize }X=\emptyset,\quad\mp@subsup{d}{}{\prime}(s,s)=
for i=1 to |V| do
    and the values of }\mp@subsup{d}{}{\prime}(s,u)\mathrm{ are current
Let v be node realizing }\mp@subsup{d}{}{\prime}(s,v)=\mp@subsup{\boldsymbol{min}}{u\inv-x}{}\mp@subsup{\boldsymbol{d}}{}{\prime}(s,u
dist}(s,v)=\mp@subsup{d}{}{\prime}(s,v
Update d}\mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s,u}\boldsymbol{u})\mathrm{ for each }\boldsymbol{u}\mathrm{ in }\boldsymbol{V}-\boldsymbol{X}\mathrm{ as follows
d}(s,u)=min(\mp@subsup{d}{}{\prime}(s,u),\operatorname{dist}(s,v)+\ell(v,u)
```

$O\left(m+n^{2}\right)$ time
(1) \boldsymbol{n} outer iterations and in each iteration following steps

Improved Algorithm

(1) Main work is to compute the $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ values in each iteration
(2) $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ changes from iteration \boldsymbol{i} to $\boldsymbol{i}+\mathbf{1}$ only because of the node \boldsymbol{v} that is added to \boldsymbol{X} in iteration \boldsymbol{i}.

$$
\begin{aligned}
& \text { Initialize for each node } \boldsymbol{v} \text {, } \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\infty \\
& \text { Initialize } \boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to }|\boldsymbol{V}| \text { do } \\
& \quad / / \boldsymbol{X} \text { contains the } \boldsymbol{i}-\mathbf{1} \text { closest nodes to } \boldsymbol{s} \text {, } \\
& \quad / / \text { and the values of } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \text { are current } \\
& \text { Let } \boldsymbol{v} \text { be node realizing } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{x}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \\
& \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v}) \\
& \boldsymbol{X}=\boldsymbol{X} \cup\{\boldsymbol{v}\} \\
& \text { Update } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \text { for each } \boldsymbol{u} \text { in } \boldsymbol{V}-\boldsymbol{X} \text { as follows: } \\
& \qquad \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})=\boldsymbol{\operatorname { m i n }}\left(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}), \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})+\ell(\boldsymbol{v}, \boldsymbol{u})\right)
\end{aligned}
$$

Running time:

Improved Algorithm

$$
\begin{aligned}
& \text { Initialize for each node } \boldsymbol{v} \text {, } \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\infty \\
& \text { Initialize } \boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to }|\boldsymbol{V}| \text { do } \\
& \quad / / \boldsymbol{X} \text { contains the } \boldsymbol{i}-\mathbf{1} \text { closest nodes to } \boldsymbol{s} \text {, } \\
& \text { // and the values of } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \text { are current } \\
& \text { Let } \boldsymbol{v} \text { be node realizing } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{m i n}_{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \\
& \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v}) \\
& \boldsymbol{X}=\boldsymbol{X} \cup\{\boldsymbol{v}\} \\
& \text { Update } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \text { for each } \boldsymbol{u} \text { in } \boldsymbol{V}-\boldsymbol{X} \text { as follows: } \\
& \quad \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})=\boldsymbol{\operatorname { m i n }}\left(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}), \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})+\ell(\boldsymbol{v}, \boldsymbol{u})\right)
\end{aligned}
$$

Running time: $\boldsymbol{O}\left(\boldsymbol{m}+\boldsymbol{n}^{2}\right)$ time.
(1) \boldsymbol{n} outer iterations and in each iteration following steps
(2) updating $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ after \boldsymbol{v} is added takes $\boldsymbol{O}(\boldsymbol{\operatorname { l e g }}(\boldsymbol{v}))$ time so total work is $\boldsymbol{O}(\boldsymbol{m})$ since a node enters X only once
(3) Finding v from $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ values is $\boldsymbol{O}(\boldsymbol{n})$ time

Dijkstra's Algorithm

(1) eliminate $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ and let $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u})$ maintain it
(2) update dist values after adding \boldsymbol{v} by scanning edges out of \boldsymbol{v}

$$
\begin{aligned}
& \text { Initialize for each node } v, \operatorname{dist}(s, v)=\infty \\
& \text { Initialize } X=\emptyset, \operatorname{dist}(s, s)=0 \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to }|\boldsymbol{V}| \text { do } \\
& \text { Let } \boldsymbol{v} \text { be such that } \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{\operatorname { m i n }}_{\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}} \operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \\
& X=X \cup\{v\} \\
& \text { for each } u \text { in } \operatorname{Adj}(v) \text { do } \\
& \operatorname{dist}(s, u)=\min (\operatorname{dist}(s, u), \operatorname{dist}(s, v)+\ell(v, u))
\end{aligned}
$$

Priority Queues to maintain dist values for faster running time
\square
(1) Using heaps and standard priority queues: $O((m+n) \log n)$ (2) Using Fibonacci heaps: $O(m+n \log n)$.

Dijkstra's Algorithm

(1) eliminate $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ and let $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u})$ maintain it
(2) update dist values after adding \boldsymbol{v} by scanning edges out of \boldsymbol{v}

$$
\begin{aligned}
& \text { Initialize for each node } v, \operatorname{dist}(s, v)=\infty \\
& \text { Initialize } X=\emptyset, \operatorname{dist}(s, s)=0 \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to }|\boldsymbol{V}| \text { do } \\
& \text { Let } \boldsymbol{v} \text { be such that } \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{\operatorname { m i n }}_{\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}} \operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \\
& X=X \cup\{v\} \\
& \text { for each } u \text { in } \operatorname{Adj}(v) \text { do } \\
& \operatorname{dist}(s, u)=\min (\operatorname{dist}(s, u), \operatorname{dist}(s, v)+\ell(v, u))
\end{aligned}
$$

Priority Queues to maintain dist values for faster running time
(1) Using heaps and standard priority queues: $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log n)$
(2) Using Fibonacci heaps: $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n} \log n)$.

Priority Queues

Data structure to store a set \boldsymbol{S} of \boldsymbol{n} elements where each element $\boldsymbol{v} \in \boldsymbol{S}$ has an associated real/integer key $\boldsymbol{k}(\boldsymbol{v})$ such that the following operations:
(1) makePQ: create an empty queue.
(3) findMin: find the minimum key in S.
(0) extractMin: Remove $\boldsymbol{v} \in \boldsymbol{S}$ with smallest key and return it.

- insert $(\boldsymbol{v}, \boldsymbol{k}(\boldsymbol{v}))$: Add new element \boldsymbol{v} with key $\boldsymbol{k}(\boldsymbol{v})$ to \boldsymbol{S}.
(0) delete(v): Remove element \boldsymbol{v} from \boldsymbol{S}.
- decreaseKey $\left(v, k^{\prime}(v)\right)$:
key) to $k^{\prime}(v)$ (new key).

current
(1) meld: merge two separate priority queues into one. All operations can be performed in $O(\log n)$ time decreasekey is implemented via delete and insert.

Priority Queues

Data structure to store a set \boldsymbol{S} of \boldsymbol{n} elements where each element $\boldsymbol{v} \in \boldsymbol{S}$ has an associated real/integer key $\boldsymbol{k}(\boldsymbol{v})$ such that the following operations:
(1) makePQ: create an empty queue.
(2) findMin: find the minimum key in S.
(3) extractMin: Remove $v \in S$ with smallest key and return it.
(9) insert $(\boldsymbol{v}, \boldsymbol{k}(\boldsymbol{v}))$: Add new element \boldsymbol{v} with key $\boldsymbol{k}(\boldsymbol{v})$ to \boldsymbol{S}.
(5) delete($\boldsymbol{v})$: Remove element \boldsymbol{v} from \boldsymbol{S}.
(6) decreaseKey $\left(\boldsymbol{v}, \boldsymbol{k}^{\prime}(\boldsymbol{v})\right.$): decrease key of \boldsymbol{v} from $\boldsymbol{k}(\boldsymbol{v})$ (current key) to $\boldsymbol{k}^{\prime}(\boldsymbol{v})$ (new key). Assumption: $\boldsymbol{k}^{\prime}(\boldsymbol{v}) \leq \boldsymbol{k}(\boldsymbol{v})$.
((meld: merge two separate priority queues into one.
All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.

Priority Queues

Data structure to store a set \boldsymbol{S} of \boldsymbol{n} elements where each element $\boldsymbol{v} \in \boldsymbol{S}$ has an associated real/integer key $\boldsymbol{k}(\boldsymbol{v})$ such that the following operations:
(1) makePQ: create an empty queue.
(2) findMin: find the minimum key in S.
(3) extractMin: Remove $v \in S$ with smallest key and return it.
(4) insert $(\boldsymbol{v}, \boldsymbol{k}(\boldsymbol{v}))$: Add new element \boldsymbol{v} with key $\boldsymbol{k}(\boldsymbol{v})$ to \boldsymbol{S}.
(5) delete(v): Remove element \boldsymbol{v} from \boldsymbol{S}.
(6) decreaseKey $\left(\boldsymbol{v}, \boldsymbol{k}^{\prime}(\boldsymbol{v})\right.$): decrease key of \boldsymbol{v} from $\boldsymbol{k}(\boldsymbol{v})$ (current key) to $\boldsymbol{k}^{\prime}(\boldsymbol{v})$ (new key). Assumption: $\boldsymbol{k}^{\prime}(\boldsymbol{v}) \leq \boldsymbol{k}(\boldsymbol{v})$.
((meld: merge two separate priority queues into one.
All operations can be performed in $\boldsymbol{O}(\log \boldsymbol{n})$ time. decreaseKey is implemented via delete and insert.

Dijkstra's Algorithm using Priority Queues

```
\(Q \leftarrow\) makePQ()
insert ( \(Q,(s, 0)\) )
for each node \(u \neq s\) do
    insert \((\boldsymbol{Q},(u, \infty))\)
\(X \leftarrow \emptyset\)
for \(i=1\) to \(|V|\) do
    \((v, \operatorname{dist}(s, v))=\operatorname{extractMin}(Q)\)
    \(X=X \cup\{v\}\)
    for each \(u\) in \(\operatorname{Adj}(v)\) do
        \(\operatorname{decreaseKey}(Q,(u, \min (\operatorname{dist}(s, u), \operatorname{dist}(s, v)+\ell(v, u))))\).
```

Priority Queue operations:
(1) $\boldsymbol{O}(n)$ insert operations
(2) $\boldsymbol{O}(n)$ extractMin operations
(3) $\boldsymbol{O}(m)$ decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value
(1) All operations can be done in $\boldsymbol{O}(\boldsymbol{\operatorname { l o g } n)}$ time

Dijkstra's algorithm can be implemented in $\mathbf{O}((n+m) \log n)$ time.

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value
(1) All operations can be done in $\boldsymbol{O}(\log \boldsymbol{n})$ time

Dijkstra's algorithm can be implemented in $\mathbf{O}((\boldsymbol{n}+\boldsymbol{m}) \log n)$ time.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $\boldsymbol{O}(\log n)$ time
(2) decreaseKey in $\mathbf{O (1)}$ amortized time: ℓ decreaseKey
operations for $\ell \geq n$ take together $O(\ell)$ time
(3) Relaxed Heaps: decreaseKey in $\boldsymbol{O}(1)$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
(1) Dijkstra's algorithm can be implemented in $O(n \log n+m)$ time. If $\boldsymbol{m}=\Omega(\boldsymbol{n} \log \boldsymbol{n})$, running time is linear in input size.
(2) Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $\boldsymbol{O}(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq \boldsymbol{n}$ take together $\boldsymbol{O}(\ell)$ time
(0) Relaxed Heaps: decreaseKey in $\boldsymbol{O}(\mathbf{1})$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
(1) Dijkstra's algorithm can be implemented in $O(n \log n+m)$ time. If $\boldsymbol{m}=\Omega(\boldsymbol{n} \log \boldsymbol{n})$, running time is linear in input size.
(2) Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $\boldsymbol{O}(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
(0) Relaxed Heaps: decreaseKey in $\boldsymbol{O}(\mathbf{1})$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
(1) Dijkstra's algorithm can be implemented in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$ time. If $\boldsymbol{m}=\Omega(\boldsymbol{n} \log \boldsymbol{n})$, running time is linear in input size.
(2) Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

(1) extractMin, insert, delete, meld in $\mathbf{O}(\log n)$ time
(2) decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
(0) Relaxed Heaps: decreaseKey in $\boldsymbol{O}(\mathbf{1})$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
(1) Dijkstra's algorithm can be implemented in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$ time. If $\boldsymbol{m}=\Omega(\boldsymbol{n} \log \boldsymbol{n})$, running time is linear in input size.
(2) Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to \boldsymbol{V}. Question: How do we find the paths themselves?

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to \boldsymbol{V}. Question: How do we find the paths themselves?

```
\(\boldsymbol{Q}=\) makePQ()
insert \((Q,(s, 0))\)
\(\operatorname{prev}(s) \leftarrow n u l l\)
for each node \(u \neq s\) do
    insert ( \(Q,(u, \infty))\)
    \(\operatorname{prev}(u) \leftarrow\) null
\(X=\emptyset\)
for \(i=1\) to \(|V|\) do
    \((v, \operatorname{dist}(s, v))=\operatorname{extractMin}(Q)\)
    \(X=X \cup\{v\}\)
    for each \(u\) in \(\operatorname{Adj}(v)\) do
    if \((\operatorname{dist}(s, v)+\ell(v, u)<\operatorname{dist}(s, u))\) then
        \(\operatorname{decreaseKey}(Q,(u, \operatorname{dist}(s, v)+\ell(v, u)))\)
        \(\operatorname{prev}(u)=v\)
```


Shortest Path Tree

Lemma

The edge set $(\mathbf{u}, \operatorname{prev}(\mathbf{u}))$ is the reverse of a shortest path tree rooted at \boldsymbol{s}. For each \boldsymbol{u}, the reverse of the path from \boldsymbol{u} to \boldsymbol{s} in the tree is a shortest path from \boldsymbol{s} to \boldsymbol{u}.

Proof Sketch.

(1) The edge set $\{(\boldsymbol{u}, \operatorname{prev}(\boldsymbol{u})) \mid \boldsymbol{u} \in \boldsymbol{V}\}$ induces a directed in-tree rooted at s (Why?)
(2) Use induction on $|\boldsymbol{X}|$ to argue that the tree is a shortest path tree for nodes in \boldsymbol{V}.

Shortest paths to s

Dijkstra's algorithm gives shortest paths from \boldsymbol{s} to all nodes in \boldsymbol{V}. How do we find shortest paths from all of \boldsymbol{V} to \boldsymbol{s} ?
> (1) In undirected graphs shortest path from s to \mathbf{u} is a shortest path from \boldsymbol{u} to \boldsymbol{s} so there is no need to distinguish.
> (2) In directed graphs, use Diikstra's algorithm in $\boldsymbol{G}^{\text {ev ! }}$

Shortest paths to s

Dijkstra's algorithm gives shortest paths from \boldsymbol{s} to all nodes in \boldsymbol{V}. How do we find shortest paths from all of \boldsymbol{V} to \boldsymbol{s} ?
(1) In undirected graphs shortest path from \boldsymbol{s} to \boldsymbol{u} is a shortest path from \boldsymbol{u} to \boldsymbol{s} so there is no need to distinguish.
(2) In directed graphs, use Dijkstra's algorithm in $\boldsymbol{G}^{\text {rev }}$!

Shortest paths between sets of nodes

Suppose we are given $\boldsymbol{S} \subset \boldsymbol{V}$ and $\boldsymbol{T} \subset \boldsymbol{V}$. Want to find shortest path from \boldsymbol{S} to \boldsymbol{T} defined as:

$$
\operatorname{dist}(S, T)=\min _{s \in S, t \in T} \operatorname{dist}(s, t)
$$

How do we find $\operatorname{dist}(S, T)$?

Example Problem

You want to go from your house to a friend's house. Need to pick up some dessert along the way and hence need to stop at one of the many potential stores along the way. How do you calculate the "shortest" trip if you include this stop?

Basic solution: Compute for each $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{x})$ and $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{t})$ and take minimum. $2|X|$ shortest path computations. $O(|X|(m+n \log n))$

Better solution: Compute shortest path distances from \boldsymbol{s} to every node $\boldsymbol{v} \in \boldsymbol{V}$ with one Diikstra. Compute from every node $\boldsymbol{v} \in \boldsymbol{V}$ shortest path distance to t with one Dijkstra.

Example Problem

You want to go from your house to a friend's house. Need to pick up some dessert along the way and hence need to stop at one of the many potential stores along the way. How do you calculate the "shortest" trip if you include this stop?
Given $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and edge lengths $\boldsymbol{\ell}(\boldsymbol{e}), \boldsymbol{e} \in \boldsymbol{E}$. Want to go from \boldsymbol{s} to \boldsymbol{t}. A subset $\boldsymbol{X} \subset \boldsymbol{V}$ that corresponds to stores. Want to find $\boldsymbol{m i n}_{x \in X} d(s, x)+d(x, t)$.

Basic solution: Compute for each $x \in X, d(s, x)$ and $d(x, t)$ and take minimum. $2|X|$ shortest path computations. $O(|X|(m+n \log n))$.

Better solution: Compute shortest path distances from s to every node $\boldsymbol{v} \in \boldsymbol{V}$ with one Dijkstra. Compute from every node $\boldsymbol{v} \in \boldsymbol{V}$ shortest path distance to t with one Dijkstra

Example Problem

You want to go from your house to a friend's house. Need to pick up some dessert along the way and hence need to stop at one of the many potential stores along the way. How do you calculate the "shortest" trip if you include this stop?
Given $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and edge lengths $\boldsymbol{\ell}(\boldsymbol{e}), \boldsymbol{e} \in \boldsymbol{E}$. Want to go from \boldsymbol{s} to \boldsymbol{t}. A subset $\boldsymbol{X} \subset \boldsymbol{V}$ that corresponds to stores. Want to find $\min _{x \in X} d(s, x)+d(x, t)$.

Basic solution: Compute for each $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{x})$ and $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{t})$ and take minimum. $2|\boldsymbol{X}|$ shortest path computations.
$\boldsymbol{O}(|X|(m+n \log n))$.

Better solution: Compute shortest path distances from \boldsymbol{s} to every node $\boldsymbol{v} \in \boldsymbol{V}$ with one Diikstra. Compute from every node $\boldsymbol{v} \in \boldsymbol{V}$ shortest path distance to t with one Dijkstra.

Example Problem

You want to go from your house to a friend's house. Need to pick up some dessert along the way and hence need to stop at one of the many potential stores along the way. How do you calculate the "shortest" trip if you include this stop?
Given $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and edge lengths $\boldsymbol{\ell}(\boldsymbol{e}), \boldsymbol{e} \in \boldsymbol{E}$. Want to go from \boldsymbol{s} to \boldsymbol{t}. A subset $\boldsymbol{X} \subset \boldsymbol{V}$ that corresponds to stores. Want to find $\min _{x \in X} d(s, x)+d(x, t)$.

Basic solution: Compute for each $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{x})$ and $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{t})$ and take minimum. $2|X|$ shortest path computations. $O(|X|(m+n \log n))$.

Better solution: Compute shortest path distances from \boldsymbol{s} to every node $\boldsymbol{v} \in \boldsymbol{V}$ with one Dijkstra. Compute from every node $\boldsymbol{v} \in \boldsymbol{V}$ shortest path distance to \boldsymbol{t} with one Dijkstra.

[^0]: Proof.
 Suppose not. Then for some $i<k$ there is a path P^{\prime} from s to v_{i} of length strictly less than that of $s=\mathbf{v}_{0} \rightarrow \mathbf{v}_{1} \rightarrow \ldots \rightarrow \mathbf{v}_{i}$. Then \boldsymbol{P}^{\prime} concatenated with $\mathbf{v}_{i} \rightarrow \mathbf{v}_{i+1} \ldots \rightarrow \mathbf{v}_{k}$ contains a strictly shorter

