
CS/ECE 374 A (Spring 2020)
Homework 7 (due Mar 26 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 7.1:

(a) (8.5 points) We are given a DFA M = (Q,Σ, δ, s, A) over the alphabet Σ = {0, 1} with
m = |Q| states, and we are given a string x = a1 · · · an of length n (ai ∈ {0, 1}). We
want to find a string y = b1 · · · bn of length n that is accepted by M and is “closest” to
x, in the sense of minimizing the distance d(x, y) = |{i : ai 6= bi}| (i.e., the number of
differing bits).

Describe an efficient dynamic programming algorithm1 to solve this problem. The al-
gorithm should output not only the minimum distance but also the closest string y.
Analyze the running time as a function of n and m.

(b) (1.5 points) Describe how to modify your algorithm and analysis if the given automaton
M is an NFA instead. You may assume that the given NFA does not have ε-transitions
(since there are efficient algorithms to remove ε-transitions without increasing the num-
ber of states).

(Note: if the analysis is done carefully, the running time in (a) should be better than
in (b).)

(Note: the analogous problem for regular expressions can similarly be solved, since
regular expressions can be efficiently converted to NFAs.)

Problem 7.2: Given an unordered binary tree T , a preorder traversal is a list (an ordering) of
the nodes of T that can be obtained recursively by the following rules:

• If T has a single node r, then the list 〈r〉 is a preorder traversal.

• If T has root r and has subtrees T1 and T2 at r’s two children, and L1 and L2 are
valid preorder traversals of T1 and T2 respectively, then 〈r〉 · L1 · L2 and 〈r〉 · L2 · L1 are
both preorder traversals of T . Here, · denotes concatenation. (You may assume that all
non-leaf nodes have degree 2.)

Let d(·, ·) be a given distance function, which can be evaluated in constant time.

(a) (8.0 points) Given an unordered binary tree T with n nodes, we want to find a preorder
traversal with the minimum cost. Here, the cost of 〈v1, v2, . . . , vn〉 is defined to be
d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn).

Describe an efficient dynamic programming algorithm to compute the cost of an optimal
traversal. Analyze its worst-case running time. (Note: a correct solution with O(n2)
running time gets full credit; O(n3) gets a maximum of 6.0 points.)

1 See the general note from HW6 on what we expect in a dynamic programming solution.

1

(b) (2.0 points) Modify your algorithm and/or analysis to obtain a better running time in
the special case when T is a balanced binary tree with O(log n) height.

For example: in the following tree, 〈d, j, f, e, h, g, i, k, b, a, c〉 and 〈d, b, c, a, j, k, e, f, h, i, g〉 are
two preorder traversals (and there are many more).

a c

d

e

g

j

k
f

h

i

b

Problem 7.3: The motivation behind this problem is how to divide a set of data points into a
given number k of clusters.

Given a set P of n points in 2D, a binary space partition (BSP) is a binary tree where each
node v stores a subset of points P (v) ⊆ P , and for every non-leaf node v with children v1 and
v2, we have one of the following:

• P (v1) = {p ∈ P (v) | p.x ≤ m} and P (v2) = {p ∈ P (v) | p.x > m} for some value m; or

• P (v1) = {p ∈ P (v) | p.y ≤ m} and P (v2) = {p ∈ P (v) | p.y > m} for some value m.

In other words, P (v) is split into two subsets P (v1) and P (v2) by cutting with either a vertical
line x = m or a horizontal line y = m. (Here, p.x and p.y denote the x- and y-coordinate of
a point p respectively.) At the root r, we have P (r) = P .

For a set Q of points, define c(Q) = (max
q∈Q

q.x −min
q∈Q

q.x) · (max
q∈Q

q.y −min
q∈Q

q.y) (i.e., it is the

area of the smallest axis-aligned rectangle containing Q).

Given a set P of n points in 2D and an integer k, we want to find a BSP with k leaves to
minimize the cost function

∑
leaf v c(P (v)).

Describe (and analyze) an efficient dynamic programming algorithm to compute the cost of
an optimal BSP for this problem.

An example of a (not necessarily optimal) BSP with k = 8 leaves is given below:

A

B

C

D

E

F

G

H

A C B

D E

F G

H

2

