CS/ECE 374 A (Spring 2020)
Old HW1 Problems with Solutions

Problem OLD.1.1: Consider the recurrence

_ J T([n/3]) + T(In/4]) + T([n/5]) + T([n/6]) +n n =6
T(n) 1 n < 6.

Prove by induction that T'(n) = O(n).
Solution:
Claim 1. For ¢ > 20, and for alln > 1, we have T'(n) < cn.
Proof. Base case. For n < 6 the claim holds for any ¢ > 1 by definition.

Induction hypothesis. Let n > 6. Assume that T'(k) < ck for all 1 < k < n.
Induction step. We need to prove that T'(n) < cn. We know that

T(n) = T(In/3]) + T(In/4]) + T([n/5]) + T([n/6]) +n
< ¢|n/3] +c|n/4])+c|n/5]) +c|[n/6])+n (by the induction hypothesis)
< en/3+cen/4+cen/5+cen/6+n
1 1 1 1 3 1 19
< (§+Z+5+6)0n+n = <Z+g)cn+n = <%c+1)n < cn,

provided that

19 1
— 1< 1< = > 20.
2OC+ <c¢ = _200 <~ c¢c>20

O]

IMPORTANT NOTE: make sure that the “¢” in the conclusion from the induction step

@9

(T'(n) < cn) is the same as the “c” you start with from the induction hypothesis (T'(k) < ck
for k < n). If not (for example, if you could only conclude that T'(n) < 1.01c¢n), then the
whole proof would be incorrect—because the constant factor will “blow up” when we repeat!

This leads to another important piece of advice: don’t use big-O notation inside induction
proofs!
Problem OLD.1.2: Let L C {0,1}* be a language defined recursively as follows:

e cc L.
For all w € L we have Owl € L.

For all z,y € L we have xy € L.

And these are all the strings that are in L.



Prove, by induction, that for any w € L, and any prefix u of w, we have that #q(u) > #1(u).
Here #o(u) is the number of 0 appearing in u (#1(u) is defined similarly). You can use
without proof that #¢(zy) = #o(x) + #0(y), for any strings z, y.

Solution:

Proof. The proof is by induction on the length of w.

Base case: If jw| = 0 then w = ¢, and then #q(w) = 0 > #1(u) = 0. Since the only prefix
of the empty string is itself, the claim readily follows.

Induction hypothesis: Assume that the claim holds for all strings of length < n.
Induction step: We need to prove the claim for a string w of length n. There are two

possibilities:

e w = 0z1, for some string z € L.
Let w be any prefix of w. If u = ¢ or u = 0 then the claim clearly holds for u.
If u = w, then

F#Ho(u) = #o(w) = 1+ #0(2) +0 > 1+ #1(2) = #1(w) = #1(u),

which implies the claim (we used the induction hypothesis on z, since z € L and |z| =
|lw| —2 < n).
So the remaining case is when v = 02/, where 2’ is a prefix of z. In this case,

#o(u) = #0(02') = 1+ #0(2') > 1+#1(2) = 1+ #1(u) > #1(u),

Again, we used the induction hypothesis on z, since z € L, 2’ is a prefix of z, and z
strictly shorter than w. This implies the claim.

e w = zy, for some strings x,y € L, such that |z|, |y| > 0.
Let u be a prefix of w. If u is a prefix of x, then the claim holds readily by induction.
The remaining case is when v = xz, for some z which is prefix of y. Here,

#o(u) = #o(rz) = #o(2) + #o(2) = #1(x) + #1(2) = #1(w),

by using the induction hypothesis on = (which is a prefix of itself), and on z (which is a
prefix of y), noting that both x and y are strictly shorter than w.
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Problem OLD.1.3. Recall that the reversal w't of a string w is defined recursively as follows:
€ ifw=e¢
wh =
fea fw=a -z

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet X.



(b) Prove w = w’ for every palindrome w (according to your recursive definition).

(c) Prove that every string w such that w = w?

definition).

is a palindrome (according to your recursive

In parts (b) and (c), you may assume without proof that (x - y)® = yf e 2 and (%) = =
for all strings x and y.

Solution:

(a) A string w € ¥* is a palindrome if and only if either
o w=g¢g,or
e w = a for some symbol a € ¥, or
e w = aza for some symbol a € ¥ and some palindrome x € ¥*.

(b) Let w be an arbitrary palindrome.
Assume that x = 2% for every palindrome x such that |z| < |w|.
There are three cases to consider (mirroring the three cases in the definition):
R — ¢ by definition, so w = w’.
R

o If w =g, then w

R

e If w = a for some symbol a € ¥, then w' = a by definition, so w = w'.

e Suppose w = axa for some symbol a € ¥ and some palindrome x € P. Then

wl'=(a-zea)l
=(zea)iea by definition of reversal
=afezfeq You said we could assume this.
—qgezfeq by definition of reversal
=qgezxea by the inductive hypothesis
=w by assumption

In all three cases, we conclude that w = w.

(c) Let w be an arbitrary string such that w = w.

R

Assume that every string x such that |z| < |w| and x = 2™ is a palindrome.

There are three cases to consider (mirroring the definition of “palindrome”):
o If w = ¢, then w is a palindrome by definition.
o If w = a for some symbol a € X, then w is a palindrome by definition.

e Otherwise, we have w = ax for some symbol a and some non-empty string x.
The definition of reversal implies that w?® = (az)® = 2.

Because x is non-empty, its reversal 2t is also non-empty.

Thus, 2 = by for some symbol b and some string y.

It follows that w!* = bya, and therefore w = (W) = (bya)® = ay’s.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w = w® implies that bya = ay’b.
The recursive definition of string equality immediately implies a = b.



Because a = b, we have w = ay®®a and v = aya.

The recursive definition of string equality implies y*a = ya.
It immediately follows that (yfa)® = (ya)®.
Known properties of reversal imply (y%a)® = a(y
It follows that ay®™ = ay, and therefore y = y*.
The inductive hypothesis now implies that y is a palindrome.

R

YR — gy and (ya)? = ay®.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.



