Discussion 3a: Wednesday, February 5, 2020 Version: 2.0 CS/ECE 374 B, Spring 2020

1 Construct an NFA for the language (01) + (010)*.

Solution:
The NFA is shown in the figure below.

Note that we’ve separated the two cases of either repeated 01, or repeated 010. Why would the NFA
with states labeled 0 and 0’ merged be incorrect?

2 Construct an NFA that accepts all binary strings that have 1 as the third to last character; i.e., z1lab for
a,b € {0,1} and = € {0,1}*.

Solution:
The NFA is shown in the figure below.

3 Givena DFA M = (%,Q, 4, s, A), construct an NFA N that accepts all prefixes of L(M), i.e., w € L(N) <
wz € L(M) for some x € ¥*.



Solution:
We construct an NFA N = (X, Q’, ', s’, A’) that accepts prefie(L(M)) as follows.
Q:=Q
s =35
A:={qe Q|5 (s,w) =qand §*(q,x) € A for some w,r € X*}

8(g,a) ={d(q,a)} Vg€ Q,aeX

We let A’ be the set of states in @) that are both reachable from s via some prefix w and can reach an
accepting state via some suffix x. We make every state in A’ accepting .

Given an DFA M = (X, Q, 0, s, A), construct an NFA N that accepts all suffixes of L(M), i.e., w € L(N) <
zw € L(M) for some x € ¥*.

Solution:
We construct an NFA N = (X, Q’, ', s’, A’) that accepts prefie(L(M)) as follows.

Q' :=QU{t} (heret is a new state not in Q)

s =t

A=A
§'(t,e) ={q€ Q|5 (s,w) = q and 6*(q,z) € A for some w,z € ¥*}
§(t,a)=0 VaeX
'(g,a) = {d(q,a)} Vg€ Q,aeX

We create a new start state t and create an e-transition from ¢ to every state in @) that is both reachable
from s via some prefix £ and can reach an accepting state via some suffix w. Note that the addition of
the extra state t is necessary to avoid the e-transition being taken after the NFA takes a series of steps
and returns to s.

Given a DFA M = (3,Q, 6, s, A), construct an NFA N that accepts resverse of L(M), i.e., w € L(N) <
wf € L(M).

Solution:
We construct an NFA N = (X, Q’,0', s', A’) that accepts reverse(L(M)) as follows.

Q' :=QU{t} (heretis a new state not in Q)

=t
A= {s}
§(te)=A

VgeQaeX §(qa)={d€Q|dd, a)=q}

N is obtained from M by reversing all the directions of the edges, adding a new state ¢ that becomes
the new start state that is connected via e edges to all the original accepting states. There is a single
accepting state in N which is the start state of M. To see that N accepts reverse(L(M)) you need to
see that any accepting walk of N corresponds to an accepting walk of M.



6 Given a DFA M = (%,Q,6,s, A), construct an NFA N that accepts insertl(L(M)) := {zly | zy € L(M)},
i.e., strings in L(M) with 1 inserted somewhere. For example, if L(M) = {e, OOK!}, then insertl(L(M)) =
{1,100K!,010K!,001K!,O0K1!,00K!1}.

Solution:
We construct an NFA N = (X, Q’, ¢, s', A") that accepts insertl(L(M)) as follows:

Q' := Q x {before, after}
s’ := (s, before)
A= {(q, after) ‘ q€ A}

{(6(q,a), before), (q,after)} ifa=1

&§'((q, before),a) = {{(5((17 a), before) } otherwise

0'((g; after), a) = {(0(g, a), after) }

N simulates M, but inserts a single 1 into M’s input string at a nondeterministically chosen location.

e The state (g, before) means (the simulation of) M is in state ¢ and N has not yet inserted a 1.
e The state (g, after) means (the simulation of) M is in state ¢ and N has already inserted a 1.

7 Given a DFA M = (%,Q,6,s, A), construct an NFA N that accepts deletel(L(M)) := {xy | 21y € L(M)}.

Intuitively, deletel (L(M)) is the set of all strings that can be obtained from strings in L(M) by deleting
exactly one 1. For example, if L(M) = {101101,00,¢}, then deletel(L(M)) = {01101, 10101,10110}.

Solution:
We construct an NFA N = (X, Q’, ¥, s', A") with e-transitions that accepts deletel (L(M)) as follows:

Q' := Q x {before, after}
s’ := (s, before)
A" = {(q, after)} g € A

= {(d(q, 1), after) }

S
—
—
=

g
<

a
N—

o™

{(6(q,a), before)}
(g, after), a) = {(0(q, a), after) }
N nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest
of the input string.
e The state (g, before) means (the simulation of) M is in state ¢ and N has not yet skipped over a 1.
e The state (g, after) means (the simulation of) M is in state ¢ and N has already skipped over a 1.




Consider the following “maze”:

W |

112
4
715

A robot starts at position 1 — where at every point in time it is allowed to move only to adjacent cells.
The input is a sequence of commands V' (move vertically) or H (move horizontally), where the robot is
required to move if it gets such a command. If it is in location 2, and it gets a V' command then it must
move down to location 4. However, if it gets command H while being in location 2 then it can move either
to location 1 or 3, as it chooses.

An input is inwalid, if the robot get stuck during the execution of this sequence of commands, for any
sequence of choices it makes. For example, starting at position 1, the input HV H is not valid. (The robot
was so badly designed, that if it gets stuck, it explodes and no longer exists.)

8 A. Starting at position 1, consider the (command) input HV'V. Which location might the robot be in?
(Same for HVVV and HVVV H.)

Solution:
HVV: 2or 5.
HVVV: 4.
HVVV H: This is an invalid input. The robot can not be in any valid location.

8 B. Draw an NFA that accepts all valid inputs.

Solution:

8 C. The robot solves the maze if it arrives (at any point in time) to position 7. Draw an NFA that accepts
all inputs that are solutions to the maze.

Solution:




