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1 Let L = {w ∈ {a, b}∗ | a appears in some position i of w, and a b appears in position i+ 2} .

1 A. Create an NFA N for L with at most four states.

Solution:
The following NFA N accepts the language. The machine starts at state q0. On seeing the symbol
a, the NFA has the choice of either staying at q0 or to check if it is followed, 2 positions later, with
a b.

q0start q1 q2 q3
a

a, b

a, b b

a, b

1 B. Using the “power-set” construction, create a DFA M from N . Rather than writing down the sixteen
states and trying to fill in the transitions, build the states as needed using “incremental subset”
construction, because you won’t end up with unreachable or otherwise superfluous states.

Solution:
Using the “power-set” construction, we obtain the following DFA M .

{q0}start {q0, q1} {q0, q1, q2}

{q0, q2} {q0, q3}

{q0, q2, q3}

{q0, q1, q3}

{q0, q1, q2, q3}
a

b

a

ba

b a

b

a

b

ab
a

b

a

b

1 C. Now directly design a DFA M ′ for L with only five states, and explain the relationship between M
and M ′.

Solution:
The DFA M ′ is as follows. M ′ remembers the last two symbols seen so far.

• q′0 is the start state. M ′
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• q′1 corresponds to having seen ba as the last two symbols (or just a if this is the first symbol).
• q′2 corresponds to having seen aa as the last two symbols.
• q′3 is the accepting state.
• q′4 corresponds to having seen ab as the last two symbols.

q′0start q′1 q′2 q′3

q′4

a

b

a

b

b

a a, b

a

b

Note that if we contract all the accepting to states in M (from part (b)) to one state, then we
obtain M ′.

2 Use Thompson’s algorithm to create an NFA for the following regular expressions:

2.A. (0 + 1)∗

Solution:

! 0/s 0/a0

1/s 1/a1

(0+1)/s
!

!
(0+1)/a

!
(0+1)*/s

! !
(0+1)*/a

!

!

2.B. 01∗ + 10∗

Solution:
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!

1/s 1/a1

01*+10*/s

!

!

!

01*+10*/a

!

0/s 0/a00*/s 0*/a! !

!

0/s 0/a0

!

1/s 1/a11*/s 1*/a! !

!

!

!

3 Consider the following recursively defined function on strings:

stutter(w) :=

{
ε if w = ε

aa • stutter(x) if w = ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

• stutter(PRESTO) = PPRREESSTTOO

• stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

Let L be an arbitrary regular language.

3.A. Prove that the language stutter−1(L) := {w} stutter(w) ∈ L is regular.

Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L.
We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that accepts stutter−1(L) as follows:

Q′ = Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a)

M ′ reads its input string w and simulatesM running on stutter(w). Each timeM ′ reads a symbol,
the simulation of M reads two copies of that symbol.

3.B. Prove that the language stutter(L) := {stutter(w)}w ∈ L is regular.
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Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L.
We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that accepts stutter(L) as follows:

Q′ = Q× ({•} ∪ Σ) ∪ {fail} for some • 6∈ Σ

s′ = (s, •)
A′ = {(q, •)} q ∈ A

δ′((q, •), a) = (q, a)

δ′((q, a), b) =

{
(δ(q, a), •) if a = b

fail if a 6= b

δ′(fail, a) = fail

M ′ reads the input string stutter(w) and simulates M running on input w.

• State (q, •) meansM ′ has just read an even symbol in stutter(w), soM should ignore the next
symbol (if any).

• For any symbol a ∈ Σ, state (q, a) means M ′ has just read an odd symbol in stutter(w), and
that symbol was a. If the next symbol is an a, then M should transition normally; otherwise,
the simulation should fail.

• The state fail means M ′ has read two successive symbols that should have been equal but
were not; the input string is not stutter(w) for any string w.

Solution:
Let R be an arbitrary regular expression. We recursively construct a regular expression stutter(R)
as follows:

stutter(R) :=



∅ if R = ∅
stutter(w) if R = w for some string w ∈ Σ∗

stutter(A) + stutter(B) if R = A+B for some regular expressions A and B
stutter(A) stutter(B) if R = AB for some regular expressions A and B
(stutter(A))∗ if R = A∗ for some regular expression A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for arbitrary lan-
guages A and B:
• stutter(A ∪B) = stutter(A) ∪ stutter(B)

• stutter(A •B) = stutter(A) • stutter(B)

• stutter(A∗) = stutter(A)∗

These identities can all be proved by inductive definition-chasing, after which the claim
L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of the induction proofs
as an exercise for (((((((((

a future semester (((((an exam the reader.
Equivalently, we can directly transform R into stutter(R) by replacing every explicit string w ∈ Σ∗

inside R with stutter(w) (with additional parentheses if necessary). For example:

stutter
(
(1 + ε)(01)∗(0 + ε) + 0∗

)
= (11 + ε)(0011)∗(00 + ε) + (00)∗

Although this may look simpler, actually proving that it works requires the same induction argu-
ments.
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4 Consider the following recursively defined function on strings:

evens(w) :=


ε if w = ε

ε if w = a for some symbol a
b · evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

• evens(EXPELLIARMUS) = XELAMS

• evens(AV ADA�KEDAV RA) = V D�EAR.

Once again, let L be an arbitrary regular language.

4.A. Prove that the language evens−1(L) := {w} evens(w) ∈ L is regular.

Solution:
LetM = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that
accepts evens−1(L) as follows:

Q′ = Q× {0, 1}
s′ = (s, 0)

A′ = A× {0, 1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).

• State (q, 0) means M ′ has just read an even symbol in w, so M should ignore the next symbol
(if any).

• State (q, 1) means M ′ has just read an odd symbol in w, so M should read the next symbol
(if any).

4.B. Prove that the language evens(L) := {evens(w)}w ∈ L is regular.

Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) that
accepts evens(L) as follows:

Q′ = Q

s′ = s

A′ = A ∪ {q ∈ Q} δ(q, a) ∩A 6= ∅ for some a ∈ Σ

δ′(q, a) =
⋃
b∈Σ

{
δ
(
δ(q, b), a

)}
M ′ reads the input string evens(w) and simulates M running on string w, while nondeterministi-
cally guessing the missing symbols in w.

• When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and simulates M
reading ba from w.
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• When M ′ finishes evens(w), it guesses whether w has even or odd length, and in the odd case,
it guesses the last character of w.
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