
HW 5 Due on Monday, March 2, 2020 at 11pm

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.2

Submission instructions as in previous homeworks.

13 (100 pts.) Pancake Algorithm.

Suppose we have a stack of n pancakes of different sizes. We want to sort the pancakes so that
the smaller pancakes are on top of the larger pancakes. The only operation we can perform is a
flip - insert a spatula under the top k pancakes, for some k between 1 and n, and flip them all
over.

13.A. Describe an algorithm to sort an arbitrary stack of n pancakes and give a bound on the
number of flips that the algorithm makes. Assume that the pancake information is given to
you in the form of an n element array A. A[i] is a number between 1 and n and A[i] = j
means that the j’th smallest pancake is in position i from the bottom; in other words A[1]
is the size of the bottom most pancake (relative to the others) and A[n] is the size of the top
pancake. Assume you have the operation Flip(k) which will flip the top k pancakes. Note
that you are only interested in minimizing the number of flips.

13.B. Suppose one side of each pancake is burned. Describe an algorithm that sorts the pancakes
with the additional condition that the burned side of each pancake is on the bottom. Again,
give a bound on the number of flips. In addition to A, assume that you have an array B that
gives information on which side of the pancakes are burned; B[i] = 0 means that the bottom
side of the pancake at the i’th position is burned and B[i] = 1 means the top side is burned.
For simplicity, assume that whenever Flip(k) is done on A, the array B is automatically
updated to reflect the information on the current pancakes in A.

14 (100 pts.) Fetching Bit by Bit.

Consider an array A[0 . . n − 1] with n distinct elements. Each element is an ` bit string
representing a natural number between 0 and 2` − 1 for some ` > 0. The only way to access any
element of A is to use the function FetchBit(i, j) that returns the jth bit of A[i] in O(1) time.

14.A. (20 pts.) Suppose n = 2` − 1, i.e. exactly one of the `-bit strings does not appear in A.
Describe an algorithm to find the missing bit string in A using Θ(n log n) calls to FetchBit
without converting any of the strings to natural numbers.

14.B. (40 pts.) Suppose n = 2` − 1 as before. Describe an algorithm to find the missing bit string
in A using only O(n) calls to FetchBit.

14.C. (40 pts.) Suppose n = 2`−k, i.e. exactly k of the l−bit strings do not appear in A. Describe
an algorithm to find the k missing bit strings in A using only O(n log k) calls to FetchBit.

1

https://courses.engr.illinois.edu/cs374/sp2020/B/hw/hw_ints.pdf


15 (100 pts.) Solving Recurrence Relations.

Solve the following recurrence relations. For parts (a) and (b), give an exact solution. For
parts (c) and (d), give an asymptotic one. In both cases, justify your solution.

15.A. (20 pts.) A(n) = A(n− 1) + 2n + 1;A(0) = 0

15.B. (20 pts.) B(n) = B(n− 1) + n(n− 1) − 1;B(0) = 0

15.C. (20 pts.) C(n) = C(n/2) + C(n/3) + C(n/6) + n

15.D. (20 pts.) D(n) = D(n/2) + D(n/3) + D(n/6) + n2

2


