
HW 9: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.0

1 Although we typically speak of “the” shortest path between two nodes, a single graph could contain
several minimum-length paths with the same endpoints.

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5

14

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex
s to a target vertex t in an arbitrary directed graph G with weighted edges. You may assume
that all edge weights are positive and that all necessary arithmetic operations can be performed
in O(1) time.(
Hint: Compute shortest path distances from s to every other vertex. Throw away all edges that
cannot be part of a shortest path from s to another vertex. What is left?

)
Solution:

We start by computing shortest-path distances dist(v) from s to v, for every vertex v, using
Dijkstra’s algorithm. Call an edge u → v tight if dist(u)+w(u → v) = dist(v). Every edge in a
shortest path from s to t must be tight. Conversely, every path from s to t that uses only tight
edges has total length dist(t) and is therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E) time.
Because all edge weights are positive, H is a directed acyclic graph. It remains only to count
the number of paths from s to t in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need to
compute PathsToT(s). This function satisfies the following simple recurrence:

PathsToT(v) =


1 if v = t∑
v→w

PathsToT(w) otherwise

In particular, if v is a sink but v 6= t (and thus there are no paths from v to t), this recurrence
correctly gives us PathsToT(v) =

∑
∅ = 0.

We can memoize this function into the graph itself, storing each value PathsToT(v) at the
corresponding vertex v. Since each subproblem depends only on its successors in H, we can
compute PathsToT(v) for all vertices v by considering the vertices in reverse topological order,

1



or equivalently, by performing a depth-first search of H starting at s. The resulting algorithm
runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the prepro-
cessing phase, which runs in O(E log V ) time .

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the path-
counting algorithm (standard dynamic programming rubric)

2


