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In lecture, Andrew described an algorithm of Karatsuba that multiplies two n-digit integers using O(nlg 3)
single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications
of this algorithm.

1 Describe an algorithm to compute the product of an n-digit number and an m-digit number, where m < n,
in O(mlg 3−1n) time.

Solution:
Split the larger number into dn/me chunks, each with m digits. Multiply the smaller number by each
chunk in O(mlg 3) time using Karatsuba’s algorithm, and then add the resulting partial products with
appropriate shifts.

SkewMultiply(x[0 . . m− 1], y[0 . . n− 1]):
prod← 0
offset← 0
for i← 0 to dn/me − 1

chunk← y[i ·m . . (i+ 1) ·m− 1]
prod← prod + Multiply(x, chunk) · 10i·m

return prod

Each call to Multiply requires O(mlg 3) time, and all other work within a single iteration of the main
loop requires O(m) time. Thus, the overall running time of the algorithm is O(1) + dn/meO(mlg 3) =
O(mlg 3−1n) as required.

This is the standard method for multiplying a large integer by a single “digit” integer written in base
10m, but with each single-”digit” multiplication implemented using Karatsuba’s algorithm.

2 Describe an algorithm to compute the decimal representation of 2n in O(nlg 3) time. (The standard
algorithm that computes one digit at a time requires Θ(n2) time.)

Solution:
We compute 2n via repeated squaring, implementing the following recurrence:

2n =


1 if n = 0

(2n/2)2 if n > 0 is even
2 · (2bn/2c)2 if n is odd

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

TwoToThe(n):
if n = 0

return 1

m← bn/2c
z ← TwoToThe(m) // recurse!
z ←Multiply(z, z) // Karatsuba
if n is odd

z ← Add(z, z)
return z
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The running time of this algorithm satisfies the recurrence T (n) = T (bn/2c) +O(nlg 3). We can safely
ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the
work done at recursion depth i is O((n/2i)lg 3) = O(nlg 3/3i). Thus, the levels sums form a descending
geometric series, which is dominated by the work at level 0, so the total running time is at most O(nlg 3).

3 Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit
binary number in O(nlg 3) time.

(
Hint: Let x = a · 2n/2 + b. Watch out for an extra log factor in the

running time.
)

Solution:
Following the hint, we break the input x into two smaller numbers x = a · 2n/2 + b; recursively convert
a and b into decimal; convert 2n/2 into decimal using the solution to problem 2; multiply a and 2n/2

using Karatsuba’s algorithm; and finally add the product to b to get the final result.

Decimal(x[0 . . n− 1]):
if n < 100

use brute force
m← dn/2e
a← x[m . . n− 1]
b← x[0 . . m− 1]
return Add(Multiply(Decimal(a),TwoToThe(m)),Decimal(b))

The running time of this algorithm satisfies the recurrence T (n) = 2T (n/2) + O(nlg 3); the O(nlg 3)
term includes the running times of both Multiply and TwoToThe (as well as the final linear-time
addition).

The recursion tree for this algorithm is a binary tree, with 2i nodes at recursion depth i. Each re-
cursive call at depth i converts an n/2i-bit binary number to decimal; the non-recursive work at the
corresponding node of the recursion tree is O((n/2i)lg 3) = O(nlg 3/3i). Thus, the total work at depth
i is 2i · O(nlg 3/3i) = O(nlg 3/(3/2)i). The level sums define a descending geometric series, which is
dominated by its largest term O(nlg 3).

Notice that if we had converted 2n/2 to decimal recursively instead of calling TwoToThe, the recurrence
would have been T (n) = 3T (n/2) +O(nlg 3). Every level of this recursion tree has the same sum, so the
overall running time would be O(nlg 3 log n).

Think about later:

4 Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to compute the
decimal representation of an arbitrary n-bit binary number in O(M(n) log n) time.

Solution:
We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of
Karatsuba’s algorithm. Let T2(n) and T3(n) denote the running times of TwoToThe and Decimal,
respectively. We need to solve the recurrences

T2(n) = T2(n/2) +O(M(n)) and T3(n) = 2T3(n/2) + T2(n) +O(M(n)).

But how can we do that when we don’t know M(n)?
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For the moment, suppose M(n) = O(nc) for some constant c > 0. Since any algorithm to multiply two
n-digit numbers must read all n digits, we have M(n) = Ω(n), and therefore c ≥ 1. On the other hand,
the grade-school lattice algorithm implies M(n) = O(n2), so we can safely assume c ≤ 2. With this
assumption, the recursion tree method implies

T2(n) = T2(n/2) +O(nc) =⇒ T2(n) = O(nc)

T3(n) = 2T3(n/2) +O(nc) =⇒ T3(n) =

{
O(n log n) if c = 1,
O(nc) if c > 1.

So in this case, we have T3(n) = O(M(n) log n) as required.

In reality, M(n) may not be a simple polynomial, but we can effectively ignore any sub-polynomial
noise using the following trick. Suppose we can write M(n) = nc · µ(n) for some constant c and some
arbitrary non-decreasing function µ(n).1

To solve the recurrence T2(n) = T2(n/2) + O(M(n)), we define a new function T̃2(n) = T2(n)/µ(n).
Then we have

T̃2(n) =
T2(n/2)

µ(n)
+
O(M(n))

µ(n)
≤ T2(n/2)

µ(n/2)
+
O(M(n))

µ(n)
= T̃2(n/2) +O(nc).

Here we used the inequality µ(n) ≥ µ(n/2); this the only fact about µ that we actually need. The
recursion tree method implies T̃2(n) ≤ O(nc), and therefore T2(n) ≤ O(nc) · µ(n) = O(M(n)).

Similarly, to solve the recurrence T3(n) = 2T3(n/2) + O(M(n)), we define T̃3(n) = T3(n)/µ(n), which
gives us the recurrence T̃3(n) ≤ 2T̃3(n/2) +O(nc). The recursion tree method implies

T̃3(n) ≤

{
O(n log n) if c = 1,
O(nc) if c > 1.

In both cases, we have T̃3(n) = O(nc log n), which implies that T3(n) = O(M(n) log n).
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