1 Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: A CNF formula φ with n variables $x_{1}, x_{2}, \ldots, x_{n}$.
- Output: True if there is an assignment of True or False to each variable that satisfies φ.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- Input: A CNF formula φ with n variables x_{1}, \ldots, x_{n}.
- Output: A truth assignment to the variables that satisfies φ, or None if there is no satisfying assignment.
(Hint: You can use the magic box more than once.)

Solution:

For any CNF formula φ with variables x_{1}, \ldots, x_{n}, let $\varphi_{x_{i}=1}$ be the CNF formula obtained from φ by setting x_{i} to True and simplifying the formula; if x_{i} is a literal in a clause C we remove the clause C from the formula, and if $\neg x_{i}$ is a literal in a clause C we remove the $\neg x_{i}$ from the clause (note that if C contains only $\neg x_{i}$ then we obtain an empty clause which we interpret as not being satisfiable by any assignment). Similarly, let $\varphi_{x_{i}=0}$ be the CNF formula obtained from φ by setting x_{i} to FalSE and simplifying.
Suppose $\operatorname{Sat}(\varphi)$ returns True if φ is satisfiable and False otherwise. Then the following algorithm constructs a satisfying assignment for φ or correctly reports that no such assignment exists.

SATASSIGNMENT $(\varphi):$
if $\operatorname{SAT}(\varphi)=\operatorname{FALSE}$
return None
for $i \leftarrow 1$ to n
if $\operatorname{SAT}\left(\varphi_{x_{i}=1}\right)$
$\varphi \leftarrow \varphi_{x_{i}=1}$
$A[i] \leftarrow$ TRUE
else
$\varphi \leftarrow \varphi_{x_{i}=0}$
$A[i] \leftarrow \operatorname{FALSE}$
return $A[1 \ldots n]$

The correctness of this algorithm follows by induction from the following observation:
Claim 0.1. The CNF formula $\varphi_{x_{i}=1}$ is satisfiable if and only if φ has a satisfying assignment where $x_{i}=$ True.

Proof: First, if $\varphi_{x_{i}=1}$ has a satisfying assignment, then we can augment that satisfying assignment by setting $x_{i}=$ True and this will satisfy φ (note that the only clauses we removed from φ to obtain $\varphi_{x_{i}=1}$ have x_{i} in them, and hence setting $x_{i}=$ True will satisfy all those clauses).
On the other hand, if φ has a satisfying assignment where $x_{i}=$ True, then that assignment restricted to the variables other than x_{i} will satisfy $\varphi_{x_{i}=1}$; the reasoning is tedious.

The algorithm runs in polynomial time. Specifically, suppose $\operatorname{SAT}(\varphi)$ runs in $O\left(N^{c}\right)$ time, where N the total size of φ (sum of the clause sizes). Then SatAssignment (φ) runs in time $O\left(n N^{c}\right)$ since the formula size is only decreasing in each iteration and there are at most n iterations.

2 An independent set in a graph G is a subset S of the vertices of G, such that no two vertices in S are connected by an edge in G. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has an independent set of size k, and False otherwise.
2.A. Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
- Input: An undirected graph G.
- Output: The size of the largest independent set in G.
(Hint: You have seen this problem before.)

Solution:

Suppose $\operatorname{IndSet}(V, E, k)$ returns True if the graph (V, E) has an independent set of size k, and FALSE otherwise. Then the following algorithm returns the size of the largest independent set in G :

```
MaxIndSetSize(V,E):
for }k\leftarrow1\mathrm{ to }
    if IndSet( }V,E,k+1)=\operatorname{FalSe
        return }
```

A graph with n vertices cannot have an independent set of size larger than n, so this algorithm must return a value. If G has an independent set of size k, then it also has an independent set of size $k-1$, so the algorithm is correct.
The algorithm clearly runs in polynomial time. Specifically, if $\operatorname{IndSet}(V, E, k)$ runs in $O\left((V+E)^{c}\right)$ time, then MaxIndSetSize (V, E) runs in $O\left((V+E)^{c+1}\right)$ time.
Yes, we could have used binary search instead of linear search. Whatever.
2.B. Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:

- Input: An undirected graph G.
- Output: An independent set in G of maximum size.

Solution:

[delete vertices] I will use the algorithm MaxIndSetSize((V, E) from part (a) as a black box instead. Let $G-v$ denote the graph obtained from G by deleting vertex v, and let $G-N(v)$ denote the graph obtained from G by deleting v and all neighbors of v.

```
MaxIndSet( \(G\) ):
\(S \leftarrow \varnothing\)
\(k \leftarrow \operatorname{MaxIndSetSize}(G)\)
for all vertices \(v\) of \(G\)
    if MaxIndSetSize \((G-v)=k\)
        \(G \leftarrow G-v\)
    else
        \(G \leftarrow G-N(v)\)
        add \(v\) to \(S^{2}\)
return \(S\)
```

Correctness of this algorithm follows inductively from the following claims:
Claim 0.2. MaxIndSetSize $(G-v)=k$ if and only if G has an independent set of size k that excludes v.

Proof: Every independent set in $G-v$ is also an independent set in G; it follows that $\operatorname{MaxIndSetSize}(G-v) \leq k$.
Suppose G has an independent set S of size k that does excludes v. Then S is also an independent set of size k in $G-v$, so MaxIndSetSize $(G-v)$ is at least k, and therefore equal to k.
On the other hand, suppose $G-v$ has an independent set S of size k. Then S is also a maximum independent set of G (because $|S|=k$) that excludes v.

The algorithm clearly runs in polynomial time.

Solution:

[add edges] I will use the algorithm $\operatorname{MaxIndSetSize}(V, E)$ from part (a) as a black box instead. Let $G+u v$ denote the graph obtained from G by adding edge $u v$.

```
\(\operatorname{MaxIndSet}(G)\) :
\(\bar{k} \leftarrow \operatorname{MAXIndSETSize}(G)\)
if \(k=1\)
    return any vertex
for all vertices \(u\)
    for all vertices \(v\)
        if \(u \neq v\) and \(u v\) is not an edge
            if \(\operatorname{MaxIndSetSize}(G+u v)=k\)
                \(G \leftarrow G+u v\)
\(S \leftarrow \varnothing\)
for all vertices \(v\)
        if \(\operatorname{deg}(v)<V-1\)
            add \(v\) to \(S\)
return \(S\)
```

The algorithms adds every edge it can without changing the maximum independent set size. Let G^{\prime} denote the final graph. Any independent set in G^{\prime} is also an independent set in the original input graph G. Moreover, the largest independent set in G^{\prime} is also a largest independent set in G. Thus, to prove the algorithm correct, we need to prove the following claims about the final graph G^{\prime} :

Claim 0.3. The maximum independent set in G^{\prime} is unique.
Proof: Suppose the final graph G^{\prime} has more than two maximum independent sets A and B. Pick any vertex $u \in A \backslash B$ and any other vertex $v \in A$. The set B is still an independent set in the graph $G^{\prime}+u v$. Thus, when the algorithm considered edge $u v$, it would have added $u v$ to the graph, contradicting the assumption that A is an independent set.

Claim 0.4. Suppose $k>1$. The unique maximum independent set of G^{\prime} contains vertex v if and only if $\operatorname{deg}(v)<V-1$.

Proof: Let S be the unique maximum independent set of G^{\prime}, and let v be any vertex of G. If $v \in S$, then v has degree at most $V-k<V-1$, because v is disconnected from every other vertex in S.
On the other hand, suppose $\operatorname{deg}(v)<V-1$ but $v \notin S$. Then there must be at least vertex u such that $u v$ is not an edge in G^{\prime}. Because $v \notin S$, the set S is still an independent set in $G^{\prime}+u v$. Thus, when the algorithm considered edge $u v$, it would have added $u v$ to the graph, and we have a contradiction.

The algorithm clearly runs in polynomial time.

To think about later:

3 Formally, a proper coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1,2, \ldots, k\}$, for some integer k, such that $c(u) \neq c(v)$ for all $u v \in E$. Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The chromatic number of a graph is the minimum number of colors in a proper coloring of G.
Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following coloring problem in polynomial time:

- Input: An undirected graph G.
- Output: A valid coloring of G using the minimum possible number of colors.
(Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.)

Solution:

First we build an algorithm to compute the minimum number of colors in any valid coloring.

$$
\begin{aligned}
& \frac{\operatorname{ChromaticNumber}(G):}{\text { for } k \leftarrow V \text { down to } 1} \\
& \text { if } \operatorname{Colorable}(G, k-1)=\operatorname{FalSE} \\
& \quad \text { return } k
\end{aligned}
$$

Given a graph $G=(V, E)$ with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, the following algorithm computes an array $\operatorname{color}[1 \ldots n]$ describing a valid coloring of G with the minimum number of colors.

```
Coloring ( \(G\) ):
\(k \leftarrow\) ChromaticNumber \((G)\)
--- add a disjoint clique of size \(k\)---
\(H \leftarrow G\)
for \(c \leftarrow 1\) to \(k\)
    add vertex \(z_{c}\) to \(G\)
    for \(i \leftarrow 1\) to \(c-1\)
        add edge \(z_{i} z_{c}\) to \(H\)
--- for each vertex, try each color ---
for \(i \leftarrow 1\) to \(n\)
    for \(c \leftarrow 1\) to \(k\)
        add edge \(v_{i} z_{c}\) to \(H\)
    for \(c \leftarrow 1\) to \(k\)
        remove edge \(v_{i} z_{c}\) from \(H\)
        if Colorable \((H, k)=\) True
            color \([i] \leftarrow c\)
            break inner loop
        add edge \(v_{i} z_{c}\) from \(H\)
return color \([1 . . n]\)
```

In any k-coloring of H, the new vertices z_{1}, \ldots, z_{k} must have k distinct colors, because every pair of those vertices is connected. We assign color $[i] \leftarrow c$ to indicate that there is a k-coloring of H in which v_{i} has the same color as z_{c}. When the algorithm terminates, color $[1 . . n]$ describes a valid k-coloring of G.

To prove that the algorithm is correct, we must prove that for all i, when the i th iteration of the outer loop ends, G has a valid k-coloring that is consistent with the partial coloring color [1.. $i]$. Fix an integer i. The inductive hypothesis implies that when the i th iteration of the outer loop begins, G has a k-coloring consistent with the first $i-1$ assigned colors. (The base case $i=0$ is trivial.) If we connect v_{i} to every new vertices except z_{c}, then v_{i} must have the same color as z_{c} in any valid k-coloring. Thus, the call to Colorable inside the inner loop returns True if and only if H has a k-coloring in which v_{i} has the same color as z_{c} (and the previous $i-1$ vertices are also colored). So Colorable must return True during the second inner loop, which completes the inductive proof.
This algorithm makes $O(k n)=O\left(n^{2}\right)$ calls to Colorable, and therefore runs in polynomial time.

