Algorithms & Models of Computation

CS/ECE 374 B, Spring 2020

CYK Algorithm

Lecture 15
March 11

ATEXed: January 19, 2020 04:18

Miller, Hassanieh (UIUC) Spring 2020 1/10

We saw regular languages and context free languages.

Most programming languages are specified via context-free
grammars. Why?
o CFLs are sufficiently expressive to support what is needed.

@ At the same time one can “efficiently” solve the parsing problem:

given a string/program w, is it a valid program according to the
CFG specification of the programming language?

Miller, Hassanieh (UIUC)

Spring 2020 2 /10

CFG specification for C

<relational-expression> ::= <shift-expression>

| <relational-expression> < <shift-expression>

| <relational-expression> > <shift-expression>

| <relational-expression> <= <shift-expression>
]

<relational-expression> >= <shift-expression>

<shift-expression>
<shift-expression> << <additive-expression>

= <additive-expression>

| <shift-expression> >> <additive-expression>
<multiplicative-expression>

| <additive-expression> + <multiplicative-expression>
| <additive-expression> - <multiplicative-expression>

<additive-expression> :

<multiplicative-expression> ::= <cast-expression>
| <multiplicative-expression> * <cast-expression>
| <multiplicative-expression> / <cast-expression>

<multiplicative-expression> % <cast-expression>

<cast-expression> ::= <unary-expression>
| (<type-name>) <cast-expression>

<unary-expression> ::= <postfix-expression>
| #+ <unary-expression>

| == <unary-expression>

| <unary-operator> <cast-expression>
| sizeof <unary-expression>

|

sizeof <type-name>

Hassanieh (UIUC) Spring 2020

Algorithmic Problem

Given a CFG G = (V, T, P,S) and a string w € T*, is
w € L(G)?

@ That is, does S derive w?

@ Equivalently, is there a parse tree for w?

Miller, Hassanieh (UIUC) Spring 2020 4 /10

Algorithmic Problem

Given a CFG G = (V, T, P,S) and a string w € T*, is
w € L(G)?

@ That is, does S derive w?

@ Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)
@ Productions are all of the foom A — BC or A — a.
If € € L then S — € is also allowed.
@ Every CFG G can be converted into CNF form via an efficient
algorithm
@ Advantage: parse tree of constant degree.

Spring 2020 4 /10

Miller, Hassanieh (UIUC)

S— AB | XB
Y - AB | XB
X — AY
A—0
B—>1

Question:
e Is 000111 in L(G)?
e Is 00011 in L(G)?

Miller, Hassanieh (UIUC)

Spring 2020 5/ 10

Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:

o |lw=1and S - wisarulein P

@ |w| > 1 and there is a rule S — AB and a split w = uv with
|u|, |[v| > 1 such that A derives u and B derives v

Miller, Hassanieh (UIUC) Spring 2020 6 /10

Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:

o |lw=1and S - wisarulein P

@ |w| > 1 and there is a rule S — AB and a split w = uv with
|u|, |[v| > 1 such that A derives u and B derives v

Observation: Subproblems generated require us to know if some
non-terminal A will derive a substring of w.

Miller, Hassanieh (UIUC) Spring 2020 6 /10

Recursive solution

w = wiwr...W,
Assume r non-terminals in V

Deriv(A, i,j): 1 if non-terminal A derives substring w;wj41 ... w;,
otherwise 0

Recursive formula: Deriv(A, i, j) is 1 iff
@ j=1iand A— w;is arule or

@ j > i and there is rule A — BC and there is i < h < j such
that Deriv(B, i, h) = 1 and Deriv(C,h+1,j) =1

Output: w € L(G) iff Deriv(S,1,n) = 1.

Miller, Hassanieh (UIUC) Spring 2020 7 /10

Assume V = {A;, Ay,..., A} with S = A;

Number of subproblems: O(rn?)

Space: O(rn?)

Time to evalue a subproblem from previous ones: O(|P|n)
where P is set of rules

Total time: O(|P|rn®) which is polynomial in both |w| and
|G|. For fixed G the run time is cubic in input string length.

Not practical for most programming languages. Most languages
assume restricted forms of CFGs that enable more efficient
parsing algorithms.

(]

Miller, Hassanieh (UIUC) Spring 2020 8 /10

S— AB | XB
Y - AB | XB
X — AY
A—0
B—>1

Question:
e Is 000111 in L(G)?
e Is 00011 in L(G)?

Order of evaluation for iterative algorithm: increasing order of
substring length.

Miller, Hassanieh (UIUC) Spring 2020 9 /10

S— AB | XB
Y - AB | XB
X — AY
A—0
B—>1

Miller, Hassanieh (UIUC)

Spring 2020 10 / 10

