
Algorithms & Models of Computation
CS/ECE 374 B, Spring 2020

NFAs continued, Closure
Properties of Regular
Languages
Lecture 5
Wednesday, February 5, 2020

LATEXed: January 19, 2020 04:14

Miller, Hassanieh (UIUC) CS374 1 Spring 2020 1 / 34

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are
the same.

DFAs are special cases of NFAs (trivial)

NFAs accept regular expressions (we saw already)

DFAs accept languages accepted by NFAs (today)

Regular expressions for languages accepted by DFAs (later in
the course)

Miller, Hassanieh (UIUC) CS374 2 Spring 2020 2 / 34

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are
the same.

DFAs are special cases of NFAs (trivial)

NFAs accept regular expressions (we saw already)

DFAs accept languages accepted by NFAs (today)

Regular expressions for languages accepted by DFAs (later in
the course)

Miller, Hassanieh (UIUC) CS374 2 Spring 2020 2 / 34

Part I

Equivalence of NFAs and DFAs

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 34

Equivalence of NFAs and DFAs

Theorem
For every NFA N there is a DFA M such that L(M) = L(N).

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 34

Formal Tuple Notation for NFA

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is
a five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

Miller, Hassanieh (UIUC) CS374 5 Spring 2020 5 / 34

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = xa,
δ∗(q,w) = ∪p∈δ∗(q,x)(∪r∈δ(p,a)εreach(r))

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 34

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Miller, Hassanieh (UIUC) CS374 7 Spring 2020 7 / 34

Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate
NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N
could be in after reading x
Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing
another symbol a in the input.

When should the program accept a string w? If
δ∗(s,w) ∩ A 6= ∅.

Key Observation: A DFA M that simulates N should keep in its
memory/state the set of states of N

Thus the state space of the DFA should be P(Q).

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 34

Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate
NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N
could be in after reading x
Is it sufficient?

Yes, if it can compute δ∗(s, xa) after seeing
another symbol a in the input.

When should the program accept a string w? If
δ∗(s,w) ∩ A 6= ∅.

Key Observation: A DFA M that simulates N should keep in its
memory/state the set of states of N

Thus the state space of the DFA should be P(Q).

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 34

Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate
NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N
could be in after reading x
Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing
another symbol a in the input.

When should the program accept a string w?

If
δ∗(s,w) ∩ A 6= ∅.

Key Observation: A DFA M that simulates N should keep in its
memory/state the set of states of N

Thus the state space of the DFA should be P(Q).

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 34

Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate
NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N
could be in after reading x
Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing
another symbol a in the input.

When should the program accept a string w? If
δ∗(s,w) ∩ A 6= ∅.

Key Observation: A DFA M that simulates N should keep in its
memory/state the set of states of N

Thus the state space of the DFA should be P(Q).

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 34

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA
M = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)
A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 34

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA
M = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)

A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 34

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA
M = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)
A′ = {X ⊆ Q | X ∩ A 6= ∅}

δ′(X , a) = ∪q∈Xδ
∗(q, a) for each X ⊆ Q, a ∈ Σ.

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 34

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA
M = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)
A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 34

Example

No ε-transitions

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,⌃, �, s, A).
Define the DFA det(N) = (Q0,⌃, �0, s0, A0) as follows.

• Q0 = P(Q)

• s0 = �⇤N (s, ✏)

• A0 = {X ✓ Q | X \ A 6= ;}

• �0({q1, q2, . . . qk}, a) = �⇤N (q1, a) [�⇤N (q2, a) [· · · [�⇤N (qk, a) or more concisely,

�0(X, a) =
[

q2X

�⇤N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.

q0 q1

0, 1

1

0, 1

Figure 4: NFA N

{q0} {q0, q1}

{q1} {}

0
0, 1

0, 10, 1

1

Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
8w 2 ⌃⇤. det(N) accepts w i↵ N accepts w
8w 2 ⌃⇤. �⇤det(N)(s

0, w) 2 A0 i↵ �⇤N (s, w) \ A 6= ;
8w 2 ⌃⇤. �⇤det(N)(s

0, w) \ A 6= ; i↵ �⇤N (s, w) \ A 6= ;
Again for the induction proof to go through we need to strengthen the claim as follows.

8w 2 ⌃⇤. �⇤det(N)(s
0, w) = �⇤N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = ✏. Now

�⇤det(N)(s
0, ✏) = s0 = �⇤N (s, ✏) by the defn. of �⇤det(N) and defn. of s0

7

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 34

Example

No ε-transitions

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,⌃, �, s, A).
Define the DFA det(N) = (Q0,⌃, �0, s0, A0) as follows.

• Q0 = P(Q)

• s0 = �⇤N (s, ✏)

• A0 = {X ✓ Q | X \ A 6= ;}

• �0({q1, q2, . . . qk}, a) = �⇤N (q1, a) [�⇤N (q2, a) [· · · [�⇤N (qk, a) or more concisely,

�0(X, a) =
[

q2X

�⇤N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.

q0 q1

0, 1

1

0, 1

Figure 4: NFA N

{q0} {q0, q1}

{q1} {}

0
0, 1

0, 10, 1

1

Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
8w 2 ⌃⇤. det(N) accepts w i↵ N accepts w
8w 2 ⌃⇤. �⇤det(N)(s

0, w) 2 A0 i↵ �⇤N (s, w) \ A 6= ;
8w 2 ⌃⇤. �⇤det(N)(s

0, w) \ A 6= ; i↵ �⇤N (s, w) \ A 6= ;
Again for the induction proof to go through we need to strengthen the claim as follows.

8w 2 ⌃⇤. �⇤det(N)(s
0, w) = �⇤N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = ✏. Now

�⇤det(N)(s
0, ✏) = s0 = �⇤N (s, ✏) by the defn. of �⇤det(N) and defn. of s0

7

Miller, Hassanieh (UIUC) CS374 11 Spring 2020 11 / 34

Simulating NFA
Example the first revisited

Previous lecture.. Ran

NFA
(N1) A B C D E

a,b

a b a b

a,b

on input ababa.

t = 0:

A B C D E

a,b

a b a b

a,b

→
t = 1:

A B C D E

a,b

a b a b

a,b

→
t = 2:

A B C D E

a,b

a b a b

a,b

→
t = 3:

A B C D E

a,b

a b a b

a,b

→
t = 4:

A B C D E

a,b

a b a b

a,b

→
t = 5:

A B C D E

a,b

a b a b

a,b

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 34

Example: DFA from NFA

NFA:
(N1) A B C D E

a,b

a b a b

a,b

DFA:

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

b

a

a

b

a

b

a

b

a

b

a

b

a

b

a

b

b
a

a

b

ab

a

b

a
b

a
b

a

b

a

b

Miller, Hassanieh (UIUC) CS374 13 Spring 2020 13 / 34

Incremental construction

Only build states reachable from s ′ = εreach(s) the start state of M

q0 q3

q1 ε

q2

 1

 0

 ε

{q0, q1}

{q2,q3}

{}

 0, 1 1

{q3}

0

 0, 1

 0, 1

δ′(X , a) = ∪q∈Xδ
∗(q, a)

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 34

Incremental construction

Only build states reachable from s ′ = εreach(s) the start state of M

q0 q3

q1 ε

q2

 1

 0

 ε
{q0, q1}

{q2,q3}

{}

 0, 1 1

{q3}

0

 0, 1

 0, 1

δ′(X , a) = ∪q∈Xδ
∗(q, a)

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 34

Incremental algorithm

Build M beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and
calculate the state Y = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a
transition.

If Y is a new state add it to reachable states that need to
explored.

To compute δ∗(q, a) - set of all states reached from q on string a
Compute X = εreach(q)

Compute Y = ∪p∈Xδ(p, a)

Compute Z = εreach(Y) = ∪r∈Y εreach(r)

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 34

Proof of Correctness

Theorem
Let N = (Q,Σ, s, δ,A) be a NFA and let
M = (Q′,Σ, δ′, s ′,A′) be a DFA constructed from N via the
subset construction. Then L(N) = L(M).

Stronger claim:

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Proof by induction on |w |.

Base case: w = ε.
δ∗N(s, ε) = εreach(s).
δ∗M(s ′, ε) = s ′ = εreach(s) by definition of s ′.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 34

Proof of Correctness

Theorem
Let N = (Q,Σ, s, δ,A) be a NFA and let
M = (Q′,Σ, δ′, s ′,A′) be a DFA constructed from N via the
subset construction. Then L(N) = L(M).

Stronger claim:

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Proof by induction on |w |.

Base case: w = ε.
δ∗N(s, ε) = εreach(s).
δ∗M(s ′, ε) = s ′ = εreach(s) by definition of s ′.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 34

Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive definition of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s, x), a) by inductive definition of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s, x), a) = δ∗M(s ′, xa)
which is what we need.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 34

Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive definition of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s, x), a) by inductive definition of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s, x), a) = δ∗M(s ′, xa)
which is what we need.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 34

Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive definition of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s, x), a) by inductive definition of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s, x), a) = δ∗M(s ′, xa)
which is what we need.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 34

Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive definition of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s, x), a) by inductive definition of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s, x), a) = δ∗M(s ′, xa)
which is what we need.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 34

Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive definition of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s, x), a) by inductive definition of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s, x), a) = δ∗M(s ′, xa)
which is what we need.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 34

Example: DFA from NFA

NFA:
(N1) A B C D E

a,b

a b a b

a,b

DFA:

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 34

Part II

Closure Properties of Regular
Languages

Miller, Hassanieh (UIUC) CS374 19 Spring 2020 19 / 34

Regular Languages

Regular languages have three different characterizations

Inductive definition via base cases and closure under union,
concatenation and Kleene star

Languages accepted by DFAs

Languages accepted by NFAs

Regular language closed under many operations:

union, concatenation, Kleene star via inductive definition or
NFAs

complement, union, intersection via DFAs

homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 34

Regular Languages

Regular languages have three different characterizations

Inductive definition via base cases and closure under union,
concatenation and Kleene star

Languages accepted by DFAs

Languages accepted by NFAs

Regular language closed under many operations:

union, concatenation, Kleene star via inductive definition or
NFAs

complement, union, intersection via DFAs

homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 34

Examples: PREFIX and SUFFIX

Let L be a language over Σ.

Definition
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Definition
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Theorem
If L is regular then PREFIX(L) is regular.

Theorem
If L is regular then SUFFIX(L) is regular.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 34

Examples: PREFIX and SUFFIX

Let L be a language over Σ.

Definition
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Definition
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Theorem
If L is regular then PREFIX(L) is regular.

Theorem
If L is regular then SUFFIX(L) is regular.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 34

PREFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

X = {q ∈ Q | s can reach q in M}
Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y

Theorem
Consider DFA M ′ = (Q,Σ, δ, s,Z). L(M ′) = PREFIX(L).

Miller, Hassanieh (UIUC) CS374 22 Spring 2020 22 / 34

PREFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

X = {q ∈ Q | s can reach q in M}
Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y

Theorem
Consider DFA M ′ = (Q,Σ, δ, s,Z). L(M ′) = PREFIX(L).

Miller, Hassanieh (UIUC) CS374 22 Spring 2020 22 / 34

SUFFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}

Consider NFA N = (Q ∪ {s ′},Σ, δ′, s ′,A). Add new start state s ′

and ε-transition from s ′ to each state in X .

Claim: L(N) = SUFFIX(L).

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 34

SUFFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}

Consider NFA N = (Q ∪ {s ′},Σ, δ′, s ′,A). Add new start state s ′

and ε-transition from s ′ to each state in X .

Claim: L(N) = SUFFIX(L).

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 34

SUFFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}

Consider NFA N = (Q ∪ {s ′},Σ, δ′, s ′,A). Add new start state s ′

and ε-transition from s ′ to each state in X .

Claim: L(N) = SUFFIX(L).

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 34

SUFFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}

Consider NFA N = (Q ∪ {s ′},Σ, δ′, s ′,A). Add new start state s ′

and ε-transition from s ′ to each state in X .

Claim: L(N) = SUFFIX(L).

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 34

Part III

DFA to Regular Expressions

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 34

DFA to Regular Expressions

Theorem
Given a DFA M = (Q,Σ, δ, s,A) there is a regular expression r
such that L(r) = L(M). That is, regular expressions are as powerful
as DFAs (and hence also NFAs).

Simple algorithm but formal proof is involved. See notes.

An easier proof via a more involved algorithm later in course.

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 34

Stage 0: Input

A B

C

a

b
a

a, b

b

Miller, Hassanieh (UIUC) CS374 26 Spring 2020 26 / 34

Stage 1: Normalizing

A B

C

a

b
a

a, b

b

2: Normalizing it.

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 34

Stage 2: Remove state A

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

a

b

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 34

Stage 4: Redrawn without old edges

init B

C AC

b

a

a+ b

ǫ

a

b

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 34

Stage 4: Removing B

init B

C AC

b

a

a+ b

ǫ

a

b

init B

C AC

b

a

a+ b

ǫ

a

b

ab∗a

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 34

Stage 5: Redraw

init

C AC

a+ b

ǫ

ab∗a+ b

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 34

Stage 6: Removing C

init

C AC

a+ b

ǫ

ab∗a+ b

init

C AC

a+ b

ǫ

ab∗a+ b

(ab∗a+ b)(a+ b)∗ ǫ

Miller, Hassanieh (UIUC) CS374 32 Spring 2020 32 / 34

Stage 7: Redraw

init AC
(ab∗a+ b)(a+ b)∗

Miller, Hassanieh (UIUC) CS374 33 Spring 2020 33 / 34

Stage 8: Extract regular expression

init AC
(ab∗a+ b)(a+ b)∗

Thus, this automata is equivalent to the regular expression
(ab∗a + b)(a + b)∗.

Miller, Hassanieh (UIUC) CS374 34 Spring 2020 34 / 34

	Equivalence of NFAs and DFAs
	Closure Properties of Regular Languages
	DFA to Regular Expressions

