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Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are
the same.

DFAs are special cases of NFAs (trivial)

NFAs accept regular expressions (we saw already)

DFAs accept languages accepted by NFAs (today)

Regular expressions for languages accepted by DFAs (later in
the course)
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Part I

Equivalence of NFAs and DFAs
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Equivalence of NFAs and DFAs

Theorem
For every NFA N there is a DFA M such that L(M) = L(N).
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Formal Tuple Notation for NFA

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is
a five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.
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Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = xa,
δ∗(q,w) = ∪p∈δ∗(q,x)(∪r∈δ(p,a)εreach(r))

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 34



Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.
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Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate
NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N
could be in after reading x
Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing
another symbol a in the input.

When should the program accept a string w? If
δ∗(s,w) ∩ A 6= ∅.

Key Observation: A DFA M that simulates N should keep in its
memory/state the set of states of N

Thus the state space of the DFA should be P(Q).
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Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA
M = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)
A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.
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Example

No ε-transitions

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,⌃, �, s, A).
Define the DFA det(N) = (Q0,⌃, �0, s0, A0) as follows.

• Q0 = P(Q)

• s0 = �⇤N (s, ✏)

• A0 = {X ✓ Q | X \ A 6= ;}

• �0({q1, q2, . . . qk}, a) = �⇤N (q1, a) [ �⇤N (q2, a) [ · · · [ �⇤N (qk, a) or more concisely,

�0(X, a) =
[

q2X

�⇤N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.

q0 q1

0, 1

1

0, 1

Figure 4: NFA N

{q0} {q0, q1}

{q1} {}

0
0, 1

0, 10, 1

1

Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
8w 2 ⌃⇤. det(N) accepts w i↵ N accepts w
8w 2 ⌃⇤. �⇤det(N)(s

0, w) 2 A0 i↵ �⇤N (s, w) \ A 6= ;
8w 2 ⌃⇤. �⇤det(N)(s

0, w) \ A 6= ; i↵ �⇤N (s, w) \ A 6= ;
Again for the induction proof to go through we need to strengthen the claim as follows.

8w 2 ⌃⇤. �⇤det(N)(s
0, w) = �⇤N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = ✏. Now

�⇤det(N)(s
0, ✏) = s0 = �⇤N (s, ✏) by the defn. of �⇤det(N) and defn. of s0

7
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Simulating NFA
Example the first revisited

Previous lecture.. Ran

NFA
(N1) A B C D E

a,b

a b a b

a,b

on input ababa.

t = 0:

A B C D E

a,b

a b a b

a,b

→
t = 1:

A B C D E

a,b

a b a b

a,b

→
t = 2:

A B C D E

a,b

a b a b

a,b

→
t = 3:

A B C D E

a,b

a b a b

a,b

→
t = 4:

A B C D E

a,b

a b a b

a,b

→
t = 5:

A B C D E

a,b

a b a b

a,b
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Example: DFA from NFA

NFA:
(N1) A B C D E

a,b

a b a b

a,b

DFA:

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

b

a

a

b

a

b

a

b

a

b

a

b

a

b

a

b

b
a

a

b

ab

a

b

a
b

a
b

a

b

a

b
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Incremental construction

Only build states reachable from s ′ = εreach(s) the start state of M

q0 q3

q1 ε 

q2

 1 

 0 

 ε 

{q0, q1}

{q2,q3}

{}

 0, 1  1 

{q3}

0

 0, 1 

 0, 1

δ′(X , a) = ∪q∈Xδ
∗(q, a)
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Incremental algorithm

Build M beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and
calculate the state Y = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a
transition.

If Y is a new state add it to reachable states that need to
explored.

To compute δ∗(q, a) - set of all states reached from q on string a
Compute X = εreach(q)

Compute Y = ∪p∈Xδ(p, a)

Compute Z = εreach(Y ) = ∪r∈Y εreach(r)
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Proof of Correctness

Theorem
Let N = (Q,Σ, s, δ,A) be a NFA and let
M = (Q′,Σ, δ′, s ′,A′) be a DFA constructed from N via the
subset construction. Then L(N) = L(M).

Stronger claim:

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Proof by induction on |w |.

Base case: w = ε.
δ∗N(s, ε) = εreach(s).
δ∗M(s ′, ε) = s ′ = εreach(s) by definition of s ′.
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Proof continued

Lemma
For every string w , δ∗N(s,w) = δ∗M(s ′,w).

Inductive step: w = xa (Note: suffix definition of strings)
δ∗N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by inductive definition of δ∗N

δ∗M(s ′, xa) = δM(δ∗M(s, x), a) by inductive definition of δ∗M

By inductive hypothesis: Y = δ∗N(s, x) = δ∗M(s, x)

Thus δ∗N(s, xa) = ∪p∈Y δ
∗
N(p, a) = δM(Y , a) by definition of δM .

Therefore,
δ∗N(s, xa) = δM(Y , a) = δM(δ∗M(s, x), a) = δ∗M(s ′, xa)
which is what we need.
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Example: DFA from NFA

NFA:
(N1) A B C D E

a,b

a b a b

a,b

DFA:
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Part II

Closure Properties of Regular
Languages
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Regular Languages

Regular languages have three different characterizations

Inductive definition via base cases and closure under union,
concatenation and Kleene star

Languages accepted by DFAs

Languages accepted by NFAs

Regular language closed under many operations:

union, concatenation, Kleene star via inductive definition or
NFAs

complement, union, intersection via DFAs

homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs
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Examples: PREFIX and SUFFIX

Let L be a language over Σ.

Definition
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Definition
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Theorem
If L is regular then PREFIX(L) is regular.

Theorem
If L is regular then SUFFIX(L) is regular.
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PREFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

X = {q ∈ Q | s can reach q in M}
Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y

Theorem
Consider DFA M ′ = (Q,Σ, δ, s,Z). L(M ′) = PREFIX(L).
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SUFFIX

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}

Consider NFA N = (Q ∪ {s ′},Σ, δ′, s ′,A). Add new start state s ′

and ε-transition from s ′ to each state in X .

Claim: L(N) = SUFFIX(L).
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Claim: L(N) = SUFFIX(L).
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Part III

DFA to Regular Expressions
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DFA to Regular Expressions

Theorem
Given a DFA M = (Q,Σ, δ, s,A) there is a regular expression r
such that L(r) = L(M). That is, regular expressions are as powerful
as DFAs (and hence also NFAs).

Simple algorithm but formal proof is involved. See notes.

An easier proof via a more involved algorithm later in course.
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Stage 0: Input

A B

C

a

b
a

a, b

b
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Stage 1: Normalizing

A B

C

a

b
a

a, b

b

2: Normalizing it.

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ
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Stage 2: Remove state A

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

a

b
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Stage 4: Redrawn without old edges

init B

C AC

b

a

a+ b

ǫ

a

b
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Stage 4: Removing B

init B

C AC

b

a

a+ b

ǫ

a

b

init B

C AC

b

a

a+ b

ǫ

a

b

ab∗a

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 34



Stage 5: Redraw

init

C AC

a+ b

ǫ

ab∗a+ b
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Stage 6: Removing C

init

C AC

a+ b

ǫ

ab∗a+ b

init

C AC

a+ b

ǫ

ab∗a+ b

(ab∗a+ b)(a+ b)∗ ǫ
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Stage 7: Redraw

init AC
(ab∗a+ b)(a+ b)∗
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Stage 8: Extract regular expression

init AC
(ab∗a+ b)(a+ b)∗

Thus, this automata is equivalent to the regular expression
(ab∗a + b)(a + b)∗.
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