CS/ECE 374 <4 Spring 2021
+» Homework 7 ey

Due Thursday, April 1, 2021 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted
by exactly one person, and the beginning of the homework should clearly state the Gradescope
names and email addresses of each group member. In addition, whoever submits the homework
must tell Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them
will be provided but you can discuss them on Piazza.

* Consider a directed graph G, where each edge is colored either red, white, or blue. A walk
in G is called a French flag walk if its sequence of edge colors is red, white, blue, red, white,
blue, and so on. More formally, a walk vy — v; — ... — v, is a French flag walk if, for
every integer i, the edge v; — v;,; is red if i mod 3 = 0, white if i mod 3 = 1, and blue if
i mod 3 = 2. Describe an efficient algorithm to find all vertices in a given edge-colored
directed graph G that can be reached from a given vertex v through a French flag walk.

* Let G = (V,E) be directed graph. A subset of vertices are colored red and a subset are
colored blue and the rest are not colored. Let R C V be the set of red vertices and B C V be
the set of blue vertices.

— Describe an efficient algorithm that given G and two nodes s, t € V checks whether
there is an s-t path in G that contains at most one red vertex and at most one blue
vertex. For simplicity assume that s,t do not have colors. Ideally your algorithm
should run in O(n + m) time where n = |V| and m = |E|. Do not try to invent a
new algorithm. Come up with a way to create a new graph G’ and use a standard
algorithm on G’.

— Here is a small variation where edges are colored instead of vertices. Some of the
edges in G are colored red and some are colored blue and the rest are not colored. Let
R C E be the red edges and B C E be the blue edges. Describe an efficient algorithm
that given G and two nodes s, t checks whether there is an s-t path that contains at
most one red edge and at most one blue edge. Reduce the problem to the one in the
previous part.

o. For your information. You have seen in the lab several problems that illustrate the power
of graphs and graph search to model a variety of puzzles and games. There are several
interesting problems of this type at the end of Jeff’s notes. See also Spring’18 home work
on this topic: https://courses.engr.illinois.edu/cs374/sp2018/A/homework/hwy.pdf. You
should be able to quickly see how to model the configurations via vertices and how to
enforce the move rules via edges in the graph.

No proofs necessary but your algorithms should be clear.

https://courses.engr.illinois.edu/cs374/sp2018/A/homework/hw7.pdf

CS/ECE 374 Homework 7 (due April 1) Spring 2021

1. Problem 26 in Jeff Erickson’s chapter on basic graph algorithms. Only part (a).
2. This question is about cycles in graphs.

* Describe a linear time algorithm that given a directed graph G = (V, E) and a node
s € V outputs a directed cycle containing s if there is at least one, or correctly states
that there is no directed cycle containing s.

* Describe a linear time algorithm that given an undirected graph G = (V, E) and a node
s € V outputs a cycle containing s if there is at least one, or correctly states that there
is no cycle containing s.

* Describe a linear-time algorithm that given a directed graph outputs all the nodes in
G that are contained in some cycle. More formally you want to output

S = {v € V | there is some cycle in G that contains v}.

No formal proofs necessary but your algorithm should be clear and you should give a brief
justification. All the problems can be solved by using existing algorithms and their known
properties in a black box fashion.

3. Given an undirected connected graph G = (V, E) an edge (u,v) is called a cut edge or a
bridge if removing it from G results in two connected components (which means that u is
in one component and v in the other).

* What are the cut-edges in the graph shown in the figure?

b c d e

* Given G and edge e = (u, v) describe a linear-time algorithm that checks whether e
is a cut-edge or not. What is the running time to find all cut-edges by trying your
algorithm for each edge? No proofs necessary for this part.

* Consider any spanning tree T for G. Prove that every cut-edge must belong to T.
Conclude that there can be at most (n— 1) cut-edges in a given graph. How does this
information improve the algorithm to find all cut-edges from the one in the previous
step?

* Prove that an edge e is contained in some cycle of G if and only if it is not a cut edge.

* Lets €V be a vertex in G. Prove that there is a cycle containing s in G if and only if
there is some edge e incident to s such that e is not a cut edge of G.

* Assuming that there is a linear-time algorithm to find all the cut edges of G (as
outlined in the subsequent parts) describe a linear time algorithm to find all vertices
in G that are in some cycle. This is the same problem as in 2(c) but in undirected
graphs.

https://jeffe.cs.illinois.edu/teaching/algorithms/book/05-graphs.pdf

CS/ECE 374 Homework 7 (due April 1) Spring 2021

* Not to submit: Suppose T is any spanning tree of G. Root it at some arbitrary node.
Prove that an edge (u,v) in T where u is the parent of v is a cut-edge iff there is no
edge in G, other than (u, v), with one end point in T, (sub-tree of T rooted at v) and
one end point outside T,.

* Not to submit: Now consider the DFS tree T. Use the property in the preceding part
to design a linear-time algorithm that outputs all the cut-edges of G. What additional
information can you maintain while running DFS? Recall that there are no cross-edges
in a DFS tree T. You don’t have to prove the correctness of the algorithm.

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.

(c) Pour water from one jar to another, until either the first jar is empty or the second jar
is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

¢ Fill the third jar from the lake.

* Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)

* Empty the first jar into the lake.

* Fill the second jar from the lake.

* Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
* Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number
of operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6,10, 15 and 13 as
input, your algorithm should return the number 6 (for the sequence of operations listed
above).

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem to
breadth-first search in the following directed graph:

CS/ECE 374 Homework 7 (due April 1) Spring 2021

e V= {(a, b,c) \ 0<a<pand0<b<Band0<c< C}. Each vertex corresponds
to a possible configuration of water in the three jars. There are (A+1)(B+1)(C+1) =
O(ABC) vertices altogether.

* The graph has a directed edge (a, b, c)—(a’, b’c’) whenever it is possible to move from
the first configuration to the second in one step. Specifically, there is an edge from
(a, b, c) to each of the following vertices (except those already equal to (a, b, c)):

- (0,b,c¢) and (a,0,c) and (a, b,0) — dumping a jar into the lake
- (A, b,c) and (a,B,c) and (a, b, C) — filling a jar from the lake
0,a+b ifa+b<B
_ J(@a+b,c) 1 ¢ — pouring from the first jar into the second
(a+b—B,B,c) ifa+b>B

(0,b,a+c) ifa+c<C

(a+c—C,b,C) ifa+tc=>C

(a+b,0,c) ifa+b <A

(A,a+b—A,c) ifa+b=A

{(a,O,b+c) ifb+c<C

} — pouring from the first jar into the third
} — pouring from the second jar into the first

(@btc—C.C) ifbtc>C } — pouring from the second jar into the third
a,b+c—C, i c=>

(a+c,b,0) ifa+c<A
(A b,a+c—A) ifa+c=>A
(a,b+c¢,0) ifb+c<B
{(a,B,b+c—B) ifb+c>B

Since each vertex has at most 12 outgoing edges, there are at most 12(A + 1) x
(B+1)(C +1) = O(ABC) edges altogether.

} — pouring from the third jar into the first

} — pouring from the third jar into the second

To solve the jars problem, we need to find the shortest path in G from the start vertex
(0,0,0) to any target vertex of the form (k,-,-) or (-, k,-) or (-,+, k). We can compute this
shortest path by calling breadth-first search starting at (0,0,0), and then examining every
target vertex by brute force. If BFS does not visit any target vertex, we report that no
legal sequence of moves exists. Otherwise, we find the target vertex closest to (0,0,0) and
trace its parent pointers back to (0, 0,0) to determine the shortest sequence of moves. The
resulting algorithm runs in O(V + E) = O(ABC) time.

We can make this algorithm faster by observing that every move either leaves at least
one jar empty or leaves at least one jar full. Thus, we only need vertices (a, b, c) where
eithera=0orb=0o0orc=0o0ra=Aor b =B or c=_C; no other vertices are reachable
from (0,0,0). The number of non-redundant vertices and edges is O(AB + BC + AC).
Thus, if we only construct and search the relevant portion of G, the algorithm runs in
O(AB + BC + AC) time. [|

Rubric (for graph reduction problems): 10 points:
¢ 2 for correct vertices
e 2 for correct edges

-1 for forgetting “directed”

¢ 2 for stating the correct problem (shortest paths)

CS/ECE 374 Homework 7 (due April 1) Spring 2021

— “Breadth-first search” is not a problem; it’s an algorithm.

* 2 points for correctly applying the correct algorithm (breadth-first search)
—1 for using Dijkstra instead of BFS

* 2 points for time analysis in terms of the input parameters.

¢ Max 8 points for O(ABC) time; scale partial credit

