
CS/ECE 374: Algorithms & Models of

Computation

More DP: LCS and MIS in
Trees

Lecture 15
March 18, 2021

Chandra (UIUC) CS/ECE 374 1 Spring 2021 1 / 20

Recipe for Dynamic Programming

1 Develop a recursive backtracking style algorithm A for given
problem.

2 Identify structure of subproblems generated by A on an instance
I of size n

1 Estimate number of di↵erent subproblems generated as a
function of n. Is it polynomial or exponential in n?

2 If the number of problems is “small” (polynomial) then they
typically have some “clean” structure.

3 Rewrite subproblems in a compact fashion.
4 Rewrite recursive algorithm in terms of notation for subproblems.
5 Convert to iterative algorithm by bottom up evaluation in an

appropriate order.
6 Optimize further with data structures and/or additional ideas.

Chandra (UIUC) CS/ECE 374 2 Spring 2021 2 / 20

Part I

Longest Common Subsequence

Problem

Chandra (UIUC) CS/ECE 374 3 Spring 2021 3 / 20

LCS Problem

Definition

LCS between two sequences X and Y is the length of longest
common subsequence of X and Y .

Example

LCS between A,B,A,Z ,D,C and B,A,C ,B,A,D is

4 via
A,B,A,D

Question: Derive an e�cient polynomial time algorithm to compute
LCS of two given sequences X [1..m] and Y [1..n]

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 20

LCS Problem

Definition

LCS between two sequences X and Y is the length of longest
common subsequence of X and Y .

Example

LCS between A,B,A,Z ,D,C and B,A,C ,B,A,D is 4 via
A,B,A,D

Question: Derive an e�cient polynomial time algorithm to compute
LCS of two given sequences X [1..m] and Y [1..n]

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 20

- I e - - - - -

LCS Problem

Definition

LCS between two sequences X and Y is the length of longest
common subsequence of X and Y .

Example

LCS between A,B,A,Z ,D,C and B,A,C ,B,A,D is 4 via
A,B,A,D

Question: Derive an e�cient polynomial time algorithm to compute
LCS of two given sequences X [1..m] and Y [1..n]

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 20

*

Recursive Solution/Algorithm

Express LCS(X [1..m],Y [1..n]) in terms of smaller instances. How
do we decompose? Case analysis.

Any common subsequence of X ,Y is one of the following types

Case 0: empty if X or Y is empty sequence

Case 1: does not include X [1] the first character of X

Case 2: does not include Y [1] the first character of Y

Case 3: X [1] = Y [1] and includes X [1]

Find longest common subsequence of each type recursively and take
the max.

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 20

as first in Scg .

Recursive Solution/Algorithm

Express LCS(X [1..m],Y [1..n]) in terms of smaller instances. How
do we decompose? Case analysis.

Any common subsequence of X ,Y is one of the following types

Case 0: empty if X or Y is empty sequence

Case 1: does not include X [1] the first character of X

Case 2: does not include Y [1] the first character of Y

Case 3: X [1] = Y [1] and includes X [1]

Find longest common subsequence of each type recursively and take
the max.

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 20

Recursive Solution/Algorithm

Express LCS(X [1..m],Y [1..n]) in terms of smaller instances. How
do we decompose? Case analysis.

Any common subsequence of X ,Y is one of the following types

Case 0: empty if X or Y is empty sequence

Case 1: does not include X [1] the first character of X

Case 2: does not include Y [1] the first character of Y

Case 3: X [1] = Y [1] and includes X [1]

Find longest common subsequence of each type recursively and take
the max.

Chandra (UIUC) CS/ECE 374 6 Spring 2021 6 / 20

Recursive Solution/Algorithm

Express LCS(X [1..m],Y [1..n]) in terms of smaller instances. How
do we decompose? Case analysis.

Any common subsequence of X ,Y is one of the following types

Case 0: empty if X or Y is empty sequence

Case 1: does not include X [1] the first character of X

Case 2: does not include Y [1] the first character of Y

Case 3: X [1] = Y [1] and includes X [1]

Find longest common subsequence of each type recursively and take
the max.

Chandra (UIUC) CS/ECE 374 6 Spring 2021 6 / 20

Recursive Algorithm

LCS(X [1..m],Y [1..n])
If (m = 0 or n = 0) return 0
m1 = LCS(X [2..m],Y [1..n])
m2 = LCS(X [1..m],Y [2..n)]))
m3 = 0
If (X [1] = Y [1]) m3 = 1 + LCS(X [2..m],Y [2..n])
return max(m1,m2,m3)

Observation: Each subproblem is of the form
LCS(X [i ..m],Y [j ..n]) for some 1  i  m, 1  j  n and hence
only O(nm) of them.

Chandra (UIUC) CS/ECE 374 7 Spring 2021 7 / 20

→

I

7¥ A

-

#

Recursive Algorithm

LCS(X [1..m],Y [1..n])
If (m = 0 or n = 0) return 0
m1 = LCS(X [2..m],Y [1..n])
m2 = LCS(X [1..m],Y [2..n)]))
m3 = 0
If (X [1] = Y [1]) m3 = 1 + LCS(X [2..m],Y [2..n])
return max(m1,m2,m3)

Observation: Each subproblem is of the form
LCS(X [i ..m],Y [j ..n]) for some 1  i  m, 1  j  n and hence
only O(nm) of them.

Chandra (UIUC) CS/ECE 374 7 Spring 2021 7 / 20

Memoizing the Recursive Algorithm

int M[1..m + 1][1..n + 1]
Initialize all entries of M[i][j] to �1
return LCS(X [1..m],Y [1..n])

LCS(X [i ..m],Y [j ..n])
If (M[i][j] � 0) return M[i][j] (* return stored value *)

If (i > m) M[i][j] = 0
ElseIf (j > n) M[i][j] = 0
Else

m1 = LCS(X [i + 1..m],Y [j ..n])
m2 = LCS(X [i ..m],Y [j + 1..n)]))
m3 = 0
If (X [i] = Y [j]) m3 = 1 + LCS(X [i + 1..m],Y [j + 1..n])
M[i , j] = max(m1,m2,m3)

return M[i][j]

Chandra (UIUC) CS/ECE 374 8 Spring 2021 8 / 20

÷

F

i*¥÷
us Ciii) -- 4,17%776%7?yn .

Subproblems and Recurrence

Optimal LCS

Let LCS(i , j) be length of longest common subsequence of
xi , . . . , xm and yj , . . . , yn. Then

LCS(i , j) = max

8
><

>:

LCS(i + 1, n)

LCS(i , j + 1),

(1 + LCS(i + 1, j + 1))[xi = yj]

Base Cases: LCS(i , n + 1) = 0 for i � 1 and LCS(m + 1, j) = 0
for j � 1.

Chandra (UIUC) CS/ECE 374 9 Spring 2021 9 / 20

Subproblems and Recurrence

Optimal LCS

Let LCS(i , j) be length of longest common subsequence of
xi , . . . , xm and yj , . . . , yn. Then

LCS(i , j) = max

8
><

>:

LCS(i + 1, n)

LCS(i , j + 1),

(1 + LCS(i + 1, j + 1))[xi = yj]

Base Cases: LCS(i , n + 1) = 0 for i � 1 and LCS(m + 1, j) = 0
for j � 1.

Chandra (UIUC) CS/ECE 374 9 Spring 2021 9 / 20

Retain LCS (I , l) .

Removing Recursion to obtain Iterative

Algorithm

Name subproblems and write recurrence relation
LCS(i , j): LCS of X [i ..m],Y [j ..n]

Chandra (UIUC) CS/ECE 374 10 Spring 2021 10 / 20

Removing Recursion to obtain Iterative

Algorithm

LCS(X [1..m],Y [1..n])
int M[1..m + 1][1..n + 1]
for i = 1 to m + 1 do M[i , n + 1] = 0
for j = 1 to n + 1 do M[m + 1, j] = 0

for i = m down to 1 do

for j = n down to 1 do

M[i][j] = max

8
><

>:

(X [i] =?Y [j])(1 + M[i + 1][j + 1]),

M[i + 1][j],
M[i][j + 1]

Analysis

1 Running time is O(mn).
2 Space used is O(mn). Can be reduced to O(m + n).

Chandra (UIUC) CS/ECE 374 11 Spring 2021 11 / 20

Removing Recursion to obtain Iterative

Algorithm

LCS(X [1..m],Y [1..n])
int M[1..m + 1][1..n + 1]
for i = 1 to m + 1 do M[i , n + 1] = 0
for j = 1 to n + 1 do M[m + 1, j] = 0

for i = m down to 1 do

for j = n down to 1 do

M[i][j] = max

8
><

>:

(X [i] =?Y [j])(1 + M[i + 1][j + 1]),

M[i + 1][j],
M[i][j + 1]

Analysis

1 Running time is O(mn).
2 Space used is O(mn). Can be reduced to O(m + n).

Chandra (UIUC) CS/ECE 374 11 Spring 2021 11 / 20

÷:÷i¥⇐÷#÷÷
.

Part II

Maximum Weighted

Independent Set in Trees

Chandra (UIUC) CS/ECE 374 12 Spring 2021 12 / 20

Maximum Weight Independent Set

Problem

Input Graph G = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

NP-Hard problem in general graphs.

Chandra (UIUC) CS/ECE 374 13 Spring 2021 13 / 20

0000
00

Maximum Weight Independent Set

Problem

Input Graph G = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

NP-Hard problem in general graphs.

Chandra (UIUC) CS/ECE 374 13 Spring 2021 13 / 20

Maximum Weight Independent Set

Problem

Input Graph G = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

NP-Hard problem in general graphs.
Chandra (UIUC) CS/ECE 374 13 Spring 2021 13 / 20

Maximum Weight Independent Set in a

Tree

Input Tree T = (V ,E) and weights w(v) � 0 for each
v 2 V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 20

.

Towards a Recursive Solution

For an arbitrary graph G :
1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without v1 (recurse on
G � v1) and with v1 (recurse on G � v1 �N(v1) & include v1).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for v1 is root r of T?

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 20

Towards a Recursive Solution

For an arbitrary graph G :
1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without v1 (recurse on
G � v1) and with v1 (recurse on G � v1 �N(v1) & include v1).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?

Natural candidate for v1 is root r of T?

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 20

Towards a Recursive Solution

For an arbitrary graph G :
1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without v1 (recurse on
G � v1) and with v1 (recurse on G � v1 �N(v1) & include v1).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for v1 is root r of T?

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 20

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 62 O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r 2 O : None of the children of r can be in O. O � {r}

contains an optimum solution for each subtree of T

hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 20

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 62 O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r 2 O : None of the children of r can be in O. O � {r}

contains an optimum solution for each subtree of T

hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 20

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 62 O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r 2 O : None of the children of r can be in O. O � {r}

contains an optimum solution for each subtree of T

hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 20

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 62 O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r 2 O : None of the children of r can be in O. O � {r}

contains an optimum solution for each subtree of T

hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them?

O(n)

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 20

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 62 O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r 2 O : None of the children of r can be in O. O � {r}

contains an optimum solution for each subtree of T

hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 20

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Chandra (UIUC) CS/ECE 374 17 Spring 2021 17 / 20

000

A Recursive Solution

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) =

max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Chandra (UIUC) CS/ECE 374 18 Spring 2021 18 / 20

=

A Recursive Solution

T (u): subtree of T hanging at node u

OPT (u): max weighted independent set value in T (u)

OPT (u) = max

(P
v child of u OPT (v),

w(u) +
P

v grandchild of u OPT (v)

Chandra (UIUC) CS/ECE 374 18 Spring 2021 18 / 20

-
I

=

_-

Iterative Algorithm

1 Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 20

Iterative Algorithm

1 Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 20

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],

w(vi) +
P

vj grandchild of vi
M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 20

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],

w(vi) +
P

vj grandchild of vi
M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space:

O(n) to store the value at each node of T

Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 20

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],

w(vi) +
P

vj grandchild of vi
M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 20

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],

w(vi) +
P

vj grandchild of vi
M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 20

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi] = max

 P
vj child of vi

M[vj],

w(vi) +
P

vj grandchild of vi
M[vj]

!

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T

Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 20

.

-

I

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Chandra (UIUC) CS/ECE 374 21 Spring 2021 21 / 20

46
OPTGI--nax{ 22¥9610+4+9

✓

-

16
+9+3-111

÷i÷÷÷ii:÷:

Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required can be reduced in some cases by a careful
examination of the dependency DAG of the subproblems, and
keeping only a subset of the DAG during the computation.

4 The time required can be reduced in some cases by a careful
examination of the computation of the iterative algorithm and
using data structures and other techniques.

Chandra (UIUC) CS/ECE 374 22 Spring 2021 22 / 20

