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Course Outline

Part I: models of computation (reg exps, DFA/NFA, CFGs, TMs)

Part II: (efficient) algorithm design

Part III: intractability via reductions

Undecidablity: problems that have no algorithms
NP-Completeness: problems unlikely to have efficient algorithms
unless P = NP
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Part I

Intractability and Lower Bounds
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Turing Machines and Church-Turing Thesis

Turing defined TMs as a machine model of computation

Church-Turing thesis: any function that is computable can be
computed by TMs

Efficient Church-Turing thesis: any function that is computable
can be computed by TMs with only a polynomial slow-down
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Computability and Complexity Theory

What functions can and cannot be computed by TMs?

What functions/problems can and cannot be solved efficiently?

Why?

Foundational questions about computation

Pragmatic: Can we solve our problem or not?

Are we not being clever enough to find an efficient algorithm or
should we stop because there isn’t one or likely to be one?
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Lower Bounds and Impossibility Results

Prove that given problem cannot be solved (efficiently) on a TM.
Informally we say that the problem is “hard”.

Generally quite difficult: algorithms can be very non-trivial and clever.

Example: The famous P 6= NP conjecture.
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Reductions to Prove Intractability

A general methodology to prove impossibility results.

Start with some known hard problem X
Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who
establish hardness of a fundamental problem

Assume some core problem is hard because we haven’t been able
to solve it for a long time. This leads to conditional results

Reduction is a powerful and unifying tool in Computer Science
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Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who
establish hardness of a fundamental problem

Assume some core problem is hard because we haven’t been able
to solve it for a long time. This leads to conditional results

Reduction is a powerful and unifying tool in Computer Science

Chandra (UIUC) CS/ECE 374 7 Spring 2021 7 / 39



Reductions to Prove Intractability

A general methodology to prove impossibility results.

Start with some known hard problem X
Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?
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Decision Problems, Languages, Terminology

When proving hardness we limit attention to decision problems

A decision problem Π is a collection of instances (strings)

For each instance I of Π, answer is YES or NO

Equivalently: boolean function fΠ : Σ∗ → {0, 1} where
f (I ) = 1 if I is a YES instance, f (I ) = 0 if NO instance

Equivalently: language LΠ = {I | I is a YES instance}

Notation about encoding: distinguish I from encoding 〈I〉
n is an integer. 〈n〉 is the encoding of n in some format (could
be unary, binary, decimal etc)

G is a graph. 〈G〉 is the encoding of G in some format

M is a TM. 〈M〉 is the encoding of TM as a string according to
some fixed convention
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Examples

Given directed graph G , is it strongly connected? 〈G〉 is a YES
instance if it is, otherwise NO instance

Given number n, is it a prime number?
LPRIMES = {〈n〉 | n is prime}
Given number n is it a composite number?
LCOMPOSITE = {〈n〉 | n is a composite}
Given G = (V ,E ), s, t,B is the shortest path distance from s
to t at most B? Instance is 〈G , s, t,B〉
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Part II

(Polynomial Time) Reductions
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Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we
will use for hardness.) There are other kinds of reductions.
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Reductions for decision problems/languages

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 Input: IX , an instance of X .

3 Output: IY an instance of Y .

4 Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X
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Reductions

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX ):

// IX: instance of X.

IY ⇐R(IX )
return AY (IY )

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.
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Reductions and running time

AY

IY
YES

NO

IX
R

AX

R(n): running time of R
Q(n): running time of AY

Question: What is running time of AX ?

O(R(n) + Q(R(n)).
Why?

If IX has size n, R creates an instance IY of size at most R(n)

AY ’s time on IY is by definition at most Q(|IY |) ≤ Q(R(n)).

Example: If R(n) = n2 and Q(n) = n1.5 then AX is O(n3)

Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 39



Reductions and running time

AY

IY
YES

NO

IX
R

AX

R(n): running time of R
Q(n): running time of AY

Question: What is running time of AX ? O(R(n) + Q(R(n)).
Why?

If IX has size n, R creates an instance IY of size at most R(n)

AY ’s time on IY is by definition at most Q(|IY |) ≤ Q(R(n)).

Example: If R(n) = n2 and Q(n) = n1.5 then AX is O(n3)

Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 39



Notation and Implication of Reductions

1 If Problem X reduces to Problem Y we write X ≤ Y
2 If Problem X reduces to Problem Y where reduction R is an

efficient (polynomial-time algorithm) we write X ≤P Y .

Algorithmic implication:

Lemma

If X ≤ Y and Y has an algorithm then X has an algorithm.

If X ≤P Y and Y has a polynomial-time algorithm then X has
a polynomial-time algorithm.
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Hardness Implications of Reductions

1 Problem X reduces to Problem Y : X ≤ Y
2 Problem X efficiently reduces to Problem Y : X ≤P Y .

Hardness implication:

Lemma

If X ≤ Y and X does not have an algorithm then Y does not
have an algorithm.

If X ≤P Y and X does not have a polynomial-time algorithm
then Y does not have a polynomial-time algorithm.

Proof.

Suppose Y has an algorithm. Then X does too since X ≤ Y . But
contradicts assumption that X does not have an algorithm. Similarly
for efficient reduction.
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Transitivity of Reductions

Proposition

X ≤ Y and Y ≤ Z implies that X ≤ Z . Similarly X ≤P Y and
Y ≤P Z implies X ≤P Z .

Note: X ≤ Y does not imply that Y ≤ X and hence it is very
important to know the FROM and TO in a reduction.
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Proving Correctness of Reductions

To prove that X ≤ Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 To prove X ≤P Y , additionally show that A runs in
polynomial time.
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Remember, remember, remember

Algorithm design: reduce new problem X to known easy
problem Y
Hardness: reduce known hard problem X to new problem Y

Tools to remember:

Am I trying to design algorithm or prove hardness?

What do I know about some standard problems? Easy or hard?
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Part III

Examples of Reductions
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Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.
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The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Chandra (UIUC) CS/ECE 374 22 Spring 2021 22 / 39



The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Chandra (UIUC) CS/ECE 374 22 Spring 2021 22 / 39



Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given 〈G , k〉 outputs 〈G , k〉 where G is the complement
of G . G has an edge (u, v) if and only if (u, v) is not an edge of G .
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Correctness of reduction

Lemma

G has an independent set of size k if and only if G has a clique of
size k .

Proof.

Need to prove two facts:
G has independent set of size at least k implies that G has a clique
of size at least k .
G has a clique of size at least k implies that G has an independent
set of size at least k .
Easy to see both from the fact that S ⊆ V is an independent set in
G if and only if S is a clique in G .
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Independent Set and Clique

Independent Set ≤P Clique. What does this mean?

1 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

2 The reduction is efficient. Hence, if we have a poly-time
algorithm for Clique, then we have a poly-time algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

Also... Clique ≤P Independent Set. Why?
Caveat: in general X ≤ Y does not mean that Y ≤ X .
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Vertex Cover

Given a graph G = (V ,E ), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E ) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.

(⇒) Let S be an independent set
1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 Reduction: given (G , k), an instance of Independent Set ,
ouput (G , n − k) as an instance of Vertex Cover.

3 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k which proves correctness.

4 Easy to see reduction is efficient.

5 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.
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Part IV

Reasoning about Programs
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DFA Accepting a String

Given DFA M and string w ∈ Σ∗, does M accept w?

Instance is 〈M,w〉
Algorithm: given 〈M,w〉, output YES if M accepts w , else NO

Definition 4. A deterministic finite automaton (DFA) is M = (Q,⌃, �, s, A) where

• Q is a finite set whose element are called states,

• ⌃ is a finite set called the input alphabet,

• � : Q ⇥ ⌃ ! Q is the transition function,

• s 2 Q is the start state,

• A ✓ Q is the set of accepting/final states.

Definition 5. For a DFA M = (Q,⌃, �, s, A), string w = w1w2 · · · wk, where for each i, wi 2 ⌃, and states

p, q 2 Q, we say p
w�!M q if there is a sequence of states r0, r1, . . . rk such that (a) r0 = p, (b) for each i,

�(ri, wi+1) = ri+1, and (c) rk = q.

Problem 4. Prove that for any state p, and string w 2 ⌃⇤, there is a unique state q such that p
w�!M q.

Notation. �⇤M (p, w) = q where p
w�!M q

Definition 6. Consider a DFA M = (Q,⌃, �, s, A).

• M accepts string w 2 ⌃⇤ i↵ �⇤M (s, w) 2 A.

• The language accepted/recognized by a DFA M is L(M) = {w 2 ⌃⇤ | M accepts w}.

• A set L ✓ ⌃⇤ is said to accepted/recognized by M i↵ L = L(M).

Problem 5.

1. Which of the following is true?

• B
✏�!M B

• A
01�!M D

• D
111�!M C

• A
101�!M2

B

2. What is the following?

• �⇤M2
(A, 1011) =

• �⇤M2
(B, 010) =

• �⇤M2
(C, 100) =

q0

q1 q2

q3

0

1

1 0

1

0

0, 1

Figure 1: DFA M for problem 5

3. What is L(M)?

4. What is the language recognized if we change the initial state to B?

5. What is the language recognized if we change the set of final states to be {B} (with initial state A)?

3

Does above DFA accept 0010110?
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DFA Accepting a String

Given DFA M and string w ∈ Σ∗, does M accept w?

Instance is 〈M,w〉
Algorithm: given 〈M,w〉, output YES if M accepts w , else NO

Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in the
input size which includes both encoding size of M and |w |.
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NFA Accepting a String

Given NFA N and string w ∈ Σ∗, does N accept w?

Instance is 〈N,w〉
Algorithm: given 〈N,w〉, output YES if N accepts w , else NO

Nondeterministic Finite Automata

Mahesh Viswanathan

1 Introducing Nondeterminism

Consider the machine shown in Figure 1. Like a DFA it has finitely many states and transitions labeled by
symbols from an input alphabet (in this case {0, 1}). However, it has important di↵erences when compared
with the DFA model we have seen.

q✏ q0 q00 qp

0, 1

0
0

✏

1

0, 1

Figure 1: Nondeterministic automaton N

• State q✏ has two outgoing transitions labeled 0.

• States q0, and q00 have missing transitions. q0 has no transition labeled 1, while q00 has no transition
labeled 0.

• State q0 has a transition that is labeled not by an input symbol in {0, 1} but by ✏.

This is an example of what is called a nondeterministic finite automaton (NFA). Intuitvely, such a machine
could have many possible computations on a given input. For example, on an input of the form u001v, it
is possible for the machine to reach the accepting state qp by transitioning from q✏ to q0 after reading u.
Similarly, it is possible for the machine to reach qp also on the input u01v — for this to happen, the machine
stays in q✏ as it reads u, transitions to q0 on reading 0 after u, transitions to q00 without reading an input
symbol by following the transition labeled ✏, goes to qp on reading 1, and stays in qp while reading v. On the
other hand, the machine also have other possible computations on both u001v and u01v — it may stay in q✏
and never transition out of it; or it may transition to q00 on reading u0 by following the ✏-transition from q0

and die attempting to take a transition labeled 0 (that doesn’t exist) out of q00. The fact that the machines
behavior is not determined by the input string, is the reason these machines are called nondeterministic.

1.1 Nondeterministic Finite Automata (NFA)

NFAs di↵er from DFAs in that (a) on an input symbol a, a given state may of 0, 1, or more than 1 transition
labeled a, and (b) they can take transitions without reading any symbol from the input; these are the
✏-transitions 1. These features are captured in the following formal definition of an NFA.

Definition 1. A nondeterministic finite automaton (NFA) is a M = (Q,⌃, �, s, A) where

• Q is a finite set whose elements are called states,

1Beware: ✏-transitions are not transitions taken on the symbol “✏”. ✏ is not a symbol! They are transitions that are taken
without reading any symbol from the input.

1

Does above NFA accept 0010110?
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NFA Accepting a String

Given NFA N and string w ∈ Σ∗, does N accept w?

Instance is 〈N,w〉
Algorithm: given 〈N,w〉, output YES if N accepts w , else NO

Question: Is there an algorithm for this problem?

Convert N to equivalent DFA M and use previous algorithm!

Hence a reduction that takes 〈N,w〉 to 〈M,w〉
Is this reduction efficient? No, because |M| is exponential in
|N| in the worst case.

Exercise: Describe a polynomial-time algorithm.
Hence reduction may allow you to see an easy algorithm but not
necessarily best algorithm!
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DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA 〈M〉.
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
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NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.
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Reasoning about TMs/Programs

〈M〉 is encoding of a TM M .

Equivalently think of 〈M〉 as the code of a program in some
high-level programming language

Three related problems:

Given 〈M〉 does M halt on blank input? (Halting Problem)

Given 〈M,w〉 does M halt on input w?

Given 〈M,w〉 does M accept w? (Universal Language)

Question: Do any of the above problems have an algorithm?

Theorem (Turing)

All the three problems are undecidable! No algorithm/program/TM.
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CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder? No! Why?

main() {
stealthcode()

print(‘‘Hello World’’)

}
stealthcode() {

do this

do that

viola

}
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Reducing Halting to Autograder

Halting problem: given arbitrary program foo(), does it halt?

Reduction to CS125Autograder: given foo() output foobar()

main() {
foo()

print(‘‘Hello World’’)

}
foo() {

line 1

line 2

...

}

Note: Reduction only needs to add a few lines of code to foo()

foobar() prints “Hello World” if and only if foo() halts!

If we had CS125Autograder then we can solve Halting. But
Halting is hard according to Turing. Hence ...
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