CS/ECE-374: Lecture 1

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

January 26, 2021

University of Illinois at Urbana-Champaign

Course Administration

Instructional Staff

- Section A: Chandra Chekuri and Patrick LinJ
- Section B: Nickvash Kani and Yi Lu,

- 11 Teaching Assistants,

- 28 Undergraduate Course Assistants
;. See course webpage

Use private notes on Piazza to reach course
staff. Direct email only for sensitive or confidential
Information.

Section Avs B

Only lectures different for the sections.
Homework, exams, labs etc will be common.

Homework groups can be across sections.

Online resources

. Webpage: General information, announcements,|
homeworks, course policies
courses.engr.illinois.edu/cs374 B

- Gradescope: Written homework submission and grading,
regrade requests

- PrairieLearn: Quizzes, short question, autograded
assessments

- Plazza: Announcements, online questions and discussion,
contacting course staff (via private notes)

- Mediaspace/YouTube: Channels forvideog_“

See course webpage for links

Important: check Piazza/course web page at least once each
day 3

Prereqs and Resources

4
- Prerequisites: [CS 173 {discrete math),\-CS 225 jdata
structures)
- Recommended books: (not required)
- Introduction to Theory of Computation by Sipser
- Introduction to Automata, Languages and Computation by
Hopcroft, Motwani, Ullman
- Algorithms by Dasgupta, Papadimitriou & Vazirani.
Available online for free!
- Algorithm Design by Kleinberg & Tardos

- Lecture notes/slides/pointers: available on course
web-page
- Additional References
- Lecture notes of Jeff Erickson, Sariel Har-Peled, Mahesh

Viswanathan and others
- Introduction to Algorithms: Cormen, Leiserson, Rivest,

Stein.

Grading Policy: Overview

- ‘Quizzes. 4%
- Homeworks: 24%
- Midterm exams: 42% (2 x 21%)

- Final exam: 30% (covers the full course content)

Midterm exam dates:

- Midterm 1: Mon, March 1, 6.30-9.30pm
- Midterm 2: Mon, April 12, 6.30-9.30pm

No conflict exam offered unless you have a valid excuse.

Homework

- Quizzes, short self-graded questions on PrarieLearn: Due
Monday, 10am.

< Individually done and submitted.

- Written homework every week: Due on Wednesdays at
10am on Gradescope. Assigned at least a week In advance.

- Written homeworks can be worked on in'groups of up to 3
and each group submits one written solution (except
Homework 0).

- Important: academic integrity policies. See course web
page.

More on Homeworks

- No extensions or late homeworks accepted.

- To compensate, six problems in written homework will be
dropped (corresponds to two whole home works). And two
quizzes will be dropped.

- Important: Read homework fag/instructions on website.

Discussion Sessions/Labs

- 50min problem solving session led by TAs
- Two times a week
- Go to your assigned discussion section

- Bring pen and paper!

- Attend lectures, please ask plenty of questions.
- Attend discussion sessions.

- Don't skip homework and don’t copy homework solutions.
Each of you should think about all the problems on the
home work - do not divide and conquer.

- Start homework early! Your mind needs time to think.
- Study regularly and keep up with the course.

- This 1s a course on problem solving. Solve as many as you
can! Books/notes have plenty.

- This Is also a course on providing rigourous proofs of
correctness. Refresh your 173 background on proofs.

- Ask for help promptly. Make use of office hours/Piazza.

Homework 0

- HW 0 Is posted on the class website. Quiz 0 available on
Moodle.

- HW 0 due on Wednesady September 5th at 10am on
Gradescope

- HW 0 to be done and submitted individually.

10

Miscellaneous

Please contact instructors if you need special
accommodations.

Lectures are being taped. See course webpage.

1

High-Level Questions

- Computation, formally.

- Is there a formal definition of a computer?
- |Is there a “universal” computer?

- Algorithms

- What Is an algorithm?

- What is an efficient algorithm?

- Some fundamental algorithms for basic problems
- Broadly applicable technigues in algorithm design

- Limits of computation.

- Are there tasks that our computers cannot do?
- How do we prove lower bounds?
- Some canonical hard problems.

12

Course Structure

Course divided into three parts:

Week Tuesday Lecture Tues/Wed Lab Thursday Lecture Thurs/Fri Lab
String induction
Administrivia and course goals [Jeff's induction Regular

Jan 2529 Introduction and history; strings notes, Chandras | Languages and regular expressions | expressions

. .
L] ° [Sariel's Videos, Lec 1] induction notes] [Sariel's Videos, Lec 2] [solutions]
. solutions]

DFAs: intuition, definitions, closure

Feb 1.5 Properties DFA construction | Non-Determinism, NFAs E;rf‘sfr':f;:;:‘
o - [Automata Tutor, JFLAP, Mahesh's DFA [solutions] [Sariel’s Videos, Lec 4] el
state machines regu lar Eaaence of Dk,
Equivalence of DFAs, NFAs, and Regex to NFA to e Language
! Feb8-12 |regular expressions DFA (toRegex) |Siosure Propertles: Language Transformations
[Sariels Videos, Lec 5] [solutions] [solutions]

Fooling Sets and Proving Non-

N Regularit NO INSTRUCTION Beyond Regularity: CFGs, PDAs, Proving Non-
anguages, hint of context free e BEET | R wae iz
7 [Mahesh S DF SnoteslEa s Fooling preak) [sariel’s Videos, Lec 7/8] [solutions]

Sets Notes, Sariel's Videos, Lec 6]

e Universal Turing machines Turing Machines .)) Optional review
. EEOEZZay e Turs e Optional review for Midterm 1 e
languages/grammars, Turin o e
’ L Conflict exam: Tuesday, March 2 07:30-10:30
e Hint: Binary Divide and conquer: Selection, Divide and
Mar 1-5 | s Lec 10 search Karatsuba Conquer
M h . . [solutions] [Sariel’s Videos, Lec 11] [solutions]
))) i Dynamic
acnines Backracking D .
Mar 8-12 | ol Videos, Lec 12] [solutions] [sariel's Videos, Lec 13] programming
[solutions]
More Dynamic | Graphs, Basic Search Graph Modeling

:::g:?mz’:ﬁf:f; amming programming [Chandra's Graph notes, Sariel’s Videos, Lec | [solutions]
' [solutions] 15] Drop deadline

- Aleorithms and alsorithm desien e, 7, e R o 7 e
Topological Sort. sCCs

Mar 15-19

by 22 [Chandra’s Graph notes, Sariel's Videos, Lec (it [Chandra’s Graph notes, Sariel's Videos, Lec Ll
16] break) [solutions]
.
o Shortest paths: Bellman-Ford,
Shortest Paths: BFS and Dijkstra p = 2 More Shortest
te C h n | u e S Mar 29-Apr 2 | [Chandra's Graph rotes, Sariel Videos, Lec | S1Ortest paths | Dynamic Programming on DAGs Paths
solutions] [Chandra's Graph notes, Sariel’s Videos, Lec 2
17] ol {solutions]
Minimum

Minimum Spanning Trees Optional review

] . Aprs-9 Minimum Spanning [S:;i:::::s% Trees | Optional review for Midterm2 | CPELEE To
- Undecidability and T N e
Conflict exam: Tuesday, April 13 07:30-10:30
por 12-16 | NOINSTRUCTION Commmuige | Reductions Reductions
N P C l d . P! (Campus-wide break) breakpon Tues) | (sariets Videos, Lec21) [solutions]
-Completeness, reauctions ton
NP and NP-Hardness ¢ More NP-Hardness More NP-Hardness
p ’ A’ APF19-23 | (oot Videos, Lec 22.24] ['fﬂ?‘:’lf:"“:]"s [sariel’s Videos, Lec 23-24] [solutions]
. R . Undecidability 8D
prove intractability of problems Mg)|« &, E5" 2.
2 [solutions] orms
, Wrap-up, closing remarks Optional Review
May 3-7° | o tional review for Final Exam for final exam | Reading Day

Final exam — TBD
Conflict exam: TBD

13

- Algorithmic thinking
- Learn/remember some basic tricks, algorithms, problems,
Ideas

- Understand/appreciate limits of computation
(intractability)

- Appreciate the importance of algorithms in computer
science and beyond (engineering, mathematics, natural
sciences, social sciences, ...)

14

Formal languages and complexity
(The Blue Weeks!)

Why Languages?

First 5 weeks devoted to language theory.

15

Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

15

Multiplying Numbers

Consider the following problem:
Problem Given two n-digit numbers x and y, compute their

product.

Grade School Multiplication o o .
Compute “partial product” by multiplying each digit of y with x

and adding the partial products. l
z
JEX
Pewdso A —
adie D> 25128 2504Y
3141 I
21987
6282 =

C 8537238?)
16

Time analysis of grade school multiplication

- Each partial product: ©(n) time
- Number of partial products: <n
- Adding partial products: n additions each ©(n) (Why?)

- Total time: ©(n?)
- Is there a faster way?

17

Fast Multiplication

- O(n'>®) time [Karatsuba 1960] disproving Kolmogorov's
belief that Q(n?) is best possible

+ O(nlognloglogn) [Schonhage-Strassen 1971].
Conjecture: O(nlogn) time possible

- O(nlog n - 2°Ueg™ MY time [Furer 2008]
* O(nlogn) [Harvey-van der Hoeven 2019]

Can we achieve O(n)? No lower bound beyond trivial one!

18

Equivalent Complexity

Does this mean multiplication is as complex as another
problem that has a O(nlogn) algorithm like sorting/QuickSort?

19

Equivalent Complexity

Does this mean multiplication is as complex as another
problem that has a O(nlogn) algorithm like sorting/QuickSort?
How do we compare? The two problems have:

- Different inputs (two numbers vs n-element array)
- Different outputs (a number vs n-element array)

- Different entropy characteristics (from a information
theory perspective)

19

Equivalent Complexity

Does this mean multiplication is as complex as another
problem that has a O(nlogn) algorithm like sorting/QuickSort?
How do we compare? The two problems have:

- Different inputs (two numbers vs n-element array)
- Different outputs (a number vs n-element array)

- Different entropy characteristics (from a information
theory perspective)

Since multiplication has a O(nlogn) algorithm, is it as complex
as quicksort?

19

Languages, Problems and Algorithms ... oh my! Il

An algorithm has a runtime complexity.

EXPSPACE
?

EXPTIM
D ACE

20

Languages, Problems and Algorithms ... oh my! IlI

A problem has a complexity class!
(howder G = grerol

Unristricted Grammar
(Recognized by
Turing Machine)

Context Sesitive

Grammar
(Accepted by Linear
Bound Automata)
Context Free Grammar

(Accepted by Push
Down Automata)
7 Regular Grammar
(Acceped By
Finite Automata)

Problems do not have run-time since a problem # the
algorithm used to solve it. Complexity classes are defined

differently.
How do we compare problems? What if we just want to know If

a problem is "computable”.

21

Algorithms, Problems and Languages ... oh my! |

Definition

1. An algorithm is a step-by-step way to solve a problem.

2. A problem is some question that we'd like answered given
some input. It should be a decision problem of the form
"Does a given input fulfill property X

3. Alanguage Is a set of strings. Given a alphabet, X a
language Is a subset of X*
A language is a formal realization of this problem. For
problem X, the corresponding language Is:

L ={w | wis the encoding of an input y to problem X and

the answer to input y for a problem X is "YES” }

A decision problem X is "YES" is the string Is Iin the

language. 22

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma
and output is separated by |.

That way the language has all possible combination of inputs
with their outputs.

Machine accepts a x*y=z if "xy|z" Is in L. Rejects otherwise.

Hence, x - y iIs computable cause you can just search through

the entire P[j.ys 7] Radi probles
R S R P LN DAPE el)
l :;'Z,'; -3 e

Consequences for Computation

Hows does this help?

V4 L 8 4 . Y L
Loor UL, 72,02, % 4123

24

Consequences for Computation

O, [, oo, 10 6L 1t 000, . . _
Hows does this help? €pm i g

- Question: How many C programs are there? Croukdble
- Question: How many languages are there? Uyopuable. w‘,\(

24

Consequences for Computation

Hows does this help?

- Question: How many C programs are there?

- Question: How many languages are there?

- Hence some (in fact almost all!) languages/boolean
functions do not have any C program to recognize them.

Questions:

24

Consequences for Computation

Hows does this help?

- Question: How many C programs are there?

- Question: How many languages are there?

- Hence some (in fact almost all!) languages/boolean
functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs
and hence computable. Only uninteresting languors
uncomputable?

- Why should C programs be the definition of computability?

- Ok, there are difficult problems/languages. what
languages are computable and which have efficient
algorithms? 24

Strings

Alphabet

An alphabet is a finite set of symbols.

Examples of alphabets:
- ¥ ={0,1},
- ¥ ={a,b,c,...,z},
- ASCII.

- UTF8.

+ ¥ = {{moveforward), (moveback), (moveleft), (moveright) }

25

String Definition

Definition

1. Astring/word over X is a finite sequence of symbols over

Y. For example, ‘0101007, ‘string’, ‘(moveback) (rotate90)’

. . . it
2. X-y =Xy Is the concatenation of two Strings edo’ = shacdo_

3. The length of a string w (denoted by |w]|) is the number of

symbols in w. For example, [101] =3, |[¢] =0
4. For integer n > 0, B is set of all strings over X of length n.
Y* |s the set of all strings over ¥ 2t 3303

5. Y* set of all strings of all lengths including empty string.
s0,1% = 20,5500
CC' . -

Question: {'a’;/ c/}* = (& o, ¢ a0yl ca,
-

oo 2
st. gt P2 % g
wOo ‘(:‘ 26

- €15 a string containing no symbols. It is not a set

- {e} Is a set containing one string: the empty string. It is a
set, not a string.

+ () igsthe empty set. It contains no strings.
= $5
estion: What Is =
Qu W= {93

27

Concatenation and properties

- If x and y are strings then xy denotes their concatenation.
- Concatenation defined recursively :

Xy =yifx=ce

- xy =a(wy) if x =aw

- Xy sometimes written as x.y.

» concatenation is associative: (uv)w = u(vw) hence write
uvw = (uv)w = u(vw)

- not commutative: uv not necessarily equal to vu

- The identity element is the empty string e:

eU = Ue = U.

28

Substrings, prefixes, Suffixes

Definition _ .
VIS substring of w <= there exist strings x, y such that
W = XVy.

- If x =ethenvisa prefix of w Substring,

- Ify =ethenvisasuffixofw suko ubet

ub

29

A subsequence of a string w[1...n] is either a subsequence of
w[2...n] or w[1] followed by a subsequence of w[2...n].

Example

kapa is a supsequence of knapsack
1+ M-

kapa.

30

A subsequence of a string w[1...n] is either a subsequence of
w[2...n] or w[1] followed by a subsequence of w[2...n].

Example
kapa I1s a supsequence of knapsack

Question: How many sub-sequences are there in a string
L

w| =57 = 32 . 2" cocks

Q Yo me we repess vy ehoni et

30

String exponent

io/ léz';bbfbl /l6, L

Definition
If wis a string then w" is defined inductively as follows:

W' =€eifn=0
wh =ww"1ifn>0

Question: (blah)® =. L blahBlet

31

Set Concatenation

Definition
Given two sets X and Y of strings (over some common alphabet
Y) the of Xand Y is

XY={xy|xeX,yeVY} (1)

Question: X = {fido, rover,spot}, Y = {fluffy,tabby} —
XY = {?)Wy, 'r.‘olo ‘L"bb‘j /

rover T2y vovrokby , LS

32

> * and languages

Definition

1. X" is the set of all strings of length n. Defined inductively:
Y"={e}ifn=0
YN =3¥¥"1ifn>0
Py o= Unzozn IS the set of all finite length strings
3. Y¥F = UssX" is the set of non-empty strings.
- (o)
oxdudes € '=€5§
Definition

A language L Is a set of strings over . In other words L C ¥*,

Question: Does X* have strings of infinite length? INES

33

Rapid-fire questions -strings

Answer the following questions taking ¥ = {0, 1}.

1. What is ¥%? = ¢e3
2. How many elements are there in ¥"? = 2"
3. If jul =2and |v| =3 then whatis |u.v|? = 5

4. Let u be an arbitrary string in £*. What is eu? What is ue? = w

34

Induction on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow
inductive definitions.

Definition
The wR of a string w is defined as follows:

- W =€eifw=c¢
R

- wR = xRa if w = ax for some a € £ and string x
v dree
5 (pSe W b be e
Mew cosc wel wars
Lk WS O fyrowns:
f
— > il

‘g‘/

35

Inductive proofs on strings

Inductive proofs on strings and related problems follow
inductive definitions.

Definition
The reverse wf of a string w is defined as follows:

- W =€eifw=c¢

- wR = xRa if w = ax for some a € £ and string x

Theorem
Prove that for any strings u,v € ¥*, (uv)R = vRuR.

Example: (dog-cat)® = (cat)R-(dog)R = tacgod.

35

Principle of mathematical induction

Induction is a way to prove statements of the form vVn > 0, P(n)
where P(n) is a statement that holds for integer n.

Example: Prove that >°7 i = n(n +1)/2 for all n.

Induction template:

[Base case: Prove P(0)

- Induction hypothesis: Let k > 0 be an arbitrary integer.
Assume that P(n) holds for any n < R.

- Induction Stepzw that P(n) holds, for n = fi)

36

Structured induction

- Unlike simple cases we are working with...

- ..Induction proofs also work for more complicated
“structures”.

- Such as strings, tuples of strings, graphs etc.

- See class notes on induction for details.

37

Proving the theorem

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuF.

Proof: by induction.

On what?? |uv| = |u] + |v|?
jul?

v[?

What does it mean “induction on |u|"?

38

By induction on |u|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuF.

Proof by induction on |u] means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0, u = € since

there is only one such string. Then

39

By induction on |u|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuF.

Proof by induction on |u] means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = € since
there is only one such string. Then

(UV)R = (ev)R = VR = vRe = vReR = VRYR

Induction hypothesis: Vn > 0, for any string u of length n:

For all strings v € ¥*, (uv)f = vRuR,

39

By induction on |u|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuF.

Proof by induction on |u] means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = € since
there is only one such string. Then

(UV)R = (ev)R = VR = vRe = vReR = VRYR

Induction hypothesis: Vn > 0, for any string u of length n:
For all strings v € ¥*, (uv)f = vRuR,

No assumption about v, hence statement holds for all v e X*.

39

Inductive step

- Let u be an arbitrary string of length n > 0. Assume
Inductive hypothesis holds for all strings w of length < n.

- Since |u| = n > 0 we have u = ay for some string y with
ly| <nandae€ %

- Then

40

Inductive step

- Let u be an arbitrary string of length n > 0. Assume
Inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with

ly| <nandae€ %
- Then

() =

40

Inductive step

- Let u be an arbitrary string of length n > 0. Assume
Inductive hypothesis holds for all strings w of length < n.

- Since |u| = n > 0 we have u = ay for some string y with
ly| <nandae€ %

- Then

() =

40

Another example!

Theorem .
Prove that for any strings x and y, |xy| = x| + ||

“Base Cuee ' Assume 12170, (<€ € [:l]-O by lfitin
HarePove I=l elyl= O Iyt = €yl = Iy!
Ldiche Case Toduckie bypdast (Strong inclecck ma)
Suppose. Br w20, T wlly Ix(<n el € 1A = ey
“Tdukie chp ek 4o proe dd hypolass bolle R [xl=acl

S«r/wc isl‘-uul, ng "“l“](‘-hy‘
g‘r,o:f. * =AW :Por Sonaa mézl w e z*-’ .t‘u’l’\l‘l

xy :(,...)7 * aloy) ve keow lwyl = 1oleiy b T

“""’l = |t Iwr‘ B/ @)
2 e lob e (yl by ineloctive. by potlasis
A 41

= la' A "'

Languages

Definition _
A language L Is a set of strings over X. In other words L C *,

42

Definition _
A language L Is a set of strings over X. In other words L C *,

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is
AB={xy | x €A,y € B}.

- For languages A, B, their union is AU B, intersection Is
AN B, and difference is A\ B (also written as A — B).

- For language A C ¥* the complement of Ais A = ¥* \ A.
e N\
A~ iieo%% ";‘,_ e Sl e/m_a,,ﬁ'olog

42

Exponentiation, Kleene star etc

Definition . .
For a language L C X* and n € N, define L" inductively as

follows.
n_ {e} ifn=20
] Le(L"™Y ifn>0

And define L* = Up>ol", and LT = Up>qL"

43

Rapid-Fire questions - Languages

Problem
Consider languages over ¥ = {0,1}. s°- AL ehriegs 'y \eie O

1. What isi)%? = §c% =

2. If |L| = 2, then what is/|L*]? = 14

3. What is %, {e}*, e? = €e3 &= "0 P! Lp“o..
4. Forwhat Lis L* finite? = | =43 or £ &3
5

9 33
. What is 0, {e}™, e ? .
{61 Za:’ se° Vie? 0 & <
;;—;\,Z,‘!,q..-ig . T) > {&f Uie's —t)iég- Ve” Q - g
et=U 3 s

A

Languages: easiest, easy, hard, really hard, really” hard

- Regular languages.

- Regular expressions.
- DFA: Deterministic finite

automata. = 0 X
- NFA: Non-deterministic finite / recursively enumerable _\
automata. =
- Languages that are not regular. y' / EONEELSIRItE \ \
. Context free languages (stack). \ | l contextfree |/
- duringimachines: Decidable AN\Y @4_/;_«/
languages.

- TM Undecidable/unrecognizable
languagessthalting theorem).

45

