# CS/ECE-374: Lecture 1

Lecturer: Nickvash Kani

Chat moderator: Samir Khan

January 26, 2021

University of Illinois at Urbana-Champaign

# **Course Administration**

#### Instructional Staff

- Instructors:
  - · Section A: Chandra Chekuri and Patrick Lin
  - · Section B: Nickvash Kani and Yi Lu
- · 11 Teaching Assistants
- 28 Undergraduate Course Assistants
- · Office hours: See course webpage
- Contacting us: Use private notes on Piazza to reach course staff. Direct email only for sensitive or confidential information.

#### Section A vs B

Only lectures different for the sections.

Homework, exams, labs etc will be common.

Homework groups can be across sections.

#### Online resources

- Webpage: General information, announcements, homeworks, course policies courses.engr.illinois.edu/cs374
- Gradescope: Written homework submission and grading, regrade requests
- PrairieLearn: Quizzes, short question, autograded assessments
- Piazza: Announcements, online questions and discussion, contacting course staff (via private notes)
- Mediaspace/YouTube: Channels for videos

See course webpage for links

Important: check Piazza/course web page at least once each day

#### Prereqs and Resources

- Prerequisites: CS 173 (discrete math), CS 225 (data structures)
- Recommended books: (not required)
  - Introduction to Theory of Computation by Sipser
  - Introduction to Automata, Languages and Computation by Hopcroft, Motwani, Ullman
  - Algorithms by Dasgupta, Papadimitriou & Vazirani.
     Available online for free!
  - Algorithm Design by Kleinberg & Tardos
- Lecture notes/slides/pointers: available on course web-page
- Additional References
  - Lecture notes of Jeff Erickson, Sariel Har-Peled, Mahesh Viswanathan and others
  - Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.

# Grading Policy: Overview

- Quizzes: 4%
- Homeworks: 24%
- Midterm exams: 42% (2 × 21%)
- Final exam: 30% (covers the full course content)

#### Midterm exam dates:

- Midterm 1: Mon, March 1, 6.30–9.30pm
- Midterm 2: Mon, April 12, 6.30–9.30pm

No conflict exam offered unless you have a valid excuse.

#### Homework

- Quizzes, short self-graded questions on PrarieLearn: Due Monday, 10am.
  - Individually done and submitted.
- Written homework every week: Due on Wednesdays at 10am on *Gradescope*. Assigned at least a week in advance.
  - Written homeworks can be worked on in groups of up to 3 and each group submits one written solution (except Homework 0).
- Important: academic integrity policies. See course web page.

#### More on Homeworks

- No extensions or late homeworks accepted.
- To compensate, six problems in written homework will be dropped (corresponds to two whole home works). And two quizzes will be dropped.
- Important: Read homework faq/instructions on website.

#### Discussion Sessions/Labs

- 50min problem solving session led by TAs
- Two times a week
- Go to your assigned discussion section
- · Bring pen and paper!

#### Advice

- Attend lectures, please ask plenty of questions.
- Attend discussion sessions.
- Don't skip homework and don't copy homework solutions.
   Each of you should think about all the problems on the home work do not divide and conquer.
- Start homework early! Your mind needs time to think.
- Study regularly and keep up with the course.
- This is a course on problem solving. Solve as many as you can! Books/notes have plenty.
- This is also a course on providing rigourous proofs of correctness. Refresh your 173 background on proofs.
- Ask for help promptly. Make use of office hours/Piazza.

#### Homework 0

- HW 0 is posted on the class website. Quiz 0 available on Moodle.
- HW 0 due on Wednesady September 5th at 10am on Gradescope
- HW 0 to be done and submitted individually.

#### Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. See course webpage.

### **High-Level Questions**

- Computation, formally.
  - · Is there a formal definition of a computer?
  - Is there a "universal" computer?
- Algorithms
  - What is an algorithm?
  - What is an efficient algorithm?
  - Some fundamental algorithms for basic problems
  - Broadly applicable techniques in algorithm design
- · Limits of computation.
  - Are there tasks that our computers cannot do?
  - How do we prove lower bounds?
  - Some canonical hard problems.

#### Course Structure

#### Course divided into three parts:

• Basic automata theory: finite state machines, regular languages, hint of context free languages/grammars, Turing Machines

Algorithms and algorithm design techniques

Undecidability and
 NP-Completeness, reductions to note
 prove intractability of problems

| Week         | Tuesday Lecture                                                                                                                   | Tues/Wed Lab                                                                                 | Thursday Lecture                                                                                                    | Thurs/Fri Lab                                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Jan 25-29    | Administrivia and course goals<br>Introduction and history; strings<br>[Sariel's Videos, Lec 1]                                   | String induction<br>[Jeff's induction<br>notes, Chandra's<br>induction notes]<br>[solutions] | Languages and regular expressions<br>[Sariel's Videos, Lec 2]                                                       | Regular<br>expressions<br>[solutions]          |
| Feb 1-5      | DFAs: intuition, definitions, closure<br>properties<br>[Automata Tutor, JFLAP, Mahesh's DFA<br>notes, Sariel's Videos, Lec 3]     | DFA construction<br>[solutions]                                                              | Non-Determinism, NFAs<br>[Sariel's Videos, Lec 4]                                                                   | DFA product construction [solutions]           |
| Feb 8-12     | Equivalence of DFAs, NFAs, and regular expressions [Sariel's Videos, Lec 5]                                                       | Regex to NFA to<br>DFA (to Regex)<br>[solutions]                                             | Closure Properties: Language<br>Transformations                                                                     | Language<br>Transformations<br>[solutions]     |
| Feb 15-19    | Fooling Sets and Proving Non-<br>Regularity<br>[Mahesh's DFA notes, Fall 2015 TAs' Fooling<br>Sets Notes, Sariel's Videos, Lec 6] | NO INSTRUCTION<br>(Campus-wide<br>break)                                                     | Beyond Regularity: CFGs, PDAs,<br>Turing Machines<br>[Sariel's Videos, Lec 7/8]                                     | Proving Non-<br>Regularity<br>[solutions]      |
| Feb 22-26    | Universal Turing machines<br>[Sariel's Videos, Lec 8]                                                                             | Turing Machines [solutions]                                                                  | Optional review for Midterm 1                                                                                       | Optional review<br>for Midterm 1               |
|              |                                                                                                                                   | - Monday, March                                                                              |                                                                                                                     |                                                |
| Mar 1-5      | Reductions & Recursion<br>[Sariel's Videos, Lec 10]                                                                               | Hint: Binary<br>search<br>[solutions]                                                        | Divide and conquer: Selection,<br>Karatsuba<br>[Sariet's Videos, Lec 11]                                            | Divide and<br>Conquer<br>[solutions]           |
| Mar 8-12     | Backtracking<br>[Sariel's Videos, Lec 12]                                                                                         | Backtracking<br>[solutions]                                                                  | Dynamic programming<br>[Sariet's Videos, Lec 13]                                                                    | Dynamic<br>programming<br>[solutions]          |
| Mar 15-19    | More Dynamic programming<br>[Sariel's Videos, Lec 14]                                                                             | More Dynamic<br>programming<br>[solutions]                                                   | Graphs, Basic Search<br>[Chandra's Graph notes, Sariel's Videos, Lec<br>15]                                         | Graph Modeling<br>[solutions]<br>Drop deadline |
| Mar 22-26    | Directed Graphs, DFS, DAGs and<br>Topological Sort<br>[Chandra's Graph notes, Sariel's Videos, Lec<br>16]                         | NO INSTRUCTION<br>(Campus-wide<br>break)                                                     | More Directed Graphs: DFS again,<br>SCCs<br>[Chandra's Graph notes, Sariel's Videos, Lec<br>16]                     | More Graph<br>Modeling<br>[solutions]          |
| Mar 29-Apr 2 | Shortest Paths: BFS and Dijkstra<br>[Chandra's Graph notes, Sariel's Videos, Lec<br>17]                                           | Shortest paths<br>[solutions]                                                                | Shortest paths: Bellman-Ford,<br>Dynamic Programming on DAGs<br>[Chandra's Graph notes, Sariel's Videos, Lec<br>18] | More Shortest<br>Paths<br>[solutions]          |
| Apr 5-9      | Minimum Spanning Trees<br>[Sariet's Videos, Lec 20]                                                                               | Minimum<br>Spanning Trees<br>[solutions]                                                     | Optional review for Midterm 2                                                                                       | Optional review<br>for Midterm 2               |
|              |                                                                                                                                   | - Monday, April 1                                                                            |                                                                                                                     |                                                |
| Apr 12-16    | NO INSTRUCTION<br>(Campus-wide break)                                                                                             | NO INSTRUCTION<br>(Campus-wide<br>break on Tues)                                             | Reductions<br>[Sariel's Videos, Lec 21]                                                                             | Reductions<br>[solutions]                      |
| Apr 19-23    | NP and NP-Hardness<br>[Sariel's Videos, Lec 22-24]                                                                                | NP-hardness<br>reductions<br>[solutions]                                                     | More NP-Hardness<br>[Sariel's Videos, Lec 23-24]                                                                    | More NP-Hardne<br>[solutions]                  |
| Apr 26-30    | Undecidability<br>[Sariel's Videos, Lec 9]                                                                                        | Undecidability reductions [solutions]                                                        | TBD ICES Forms                                                                                                      | TBD [solutions] TA ICES Forms                  |
| May 3-7      | Wrap-up, closing remarks<br>Optional review for Final Exam                                                                        | Optional Review<br>for final exam                                                            | Reading Day                                                                                                         |                                                |
|              |                                                                                                                                   | Final exam — TE                                                                              |                                                                                                                     |                                                |

#### Goals

- Algorithmic thinking
- Learn/remember some basic tricks, algorithms, problems, ideas
- Understand/appreciate limits of computation (intractability)
- Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)

Formal languages and complexity

(The Blue Weeks!)

### Why Languages?

First 5 weeks devoted to language theory.

# Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

### **Multiplying Numbers**

Consider the following problem:

**Problem** Given two *n*-digit numbers *x* and *y*, compute their product.

#### **Grade School Multiplication**

Compute "partial product" by multiplying each digit of *y* with *x* and adding the partial products.



## Time analysis of grade school multiplication

- Each partial product:  $\Theta(n)$  time
- Number of partial products:  $\leq n$
- Adding partial products: n additions each  $\Theta(n)$  (Why?)
- Total time:  $\Theta(n^2)$
- Is there a faster way?

### Fast Multiplication

- $O(n^{1.58})$  time [Karatsuba 1960] disproving Kolmogorov's belief that  $\Omega(n^2)$  is best possible
- $O(n \log n \log \log n)$  [Schonhage-Strassen 1971]. **Conjecture:**  $O(n \log n)$  time possible
- $O(n \log n \cdot 2^{O(\log^* n)})$  time [Furer 2008]
- O(n log n) [Harvey-van der Hoeven 2019]

Can we achieve O(n)? No lower bound beyond trivial one!

# **Equivalent Complexity**

Does this mean multiplication is as complex as another problem that has a  $O(n \log n)$  algorithm like sorting/QuickSort?

### **Equivalent Complexity**

Does this mean multiplication is as complex as another problem that has a  $O(n \log n)$  algorithm like sorting/QuickSort? How do we compare? The two problems have:

- Different inputs (two numbers vs n-element array)
- Different outputs (a number vs n-element array)
- Different entropy characteristics (from a information theory perspective)

### **Equivalent Complexity**

Does this mean multiplication is as complex as another problem that has a  $O(n \log n)$  algorithm like sorting/QuickSort? How do we compare? The two problems have:

- Different inputs (two numbers vs n-element array)
- Different outputs (a number vs n-element array)
- Different entropy characteristics (from a information theory perspective)

Since multiplication has a  $O(n \log n)$  algorithm, is it as complex as quicksort?

# Languages, Problems and Algorithms ... oh my! II

An algorithm has a runtime complexity.



#### Languages, Problems and Algorithms ... oh my! III

A problem has a complexity class!

(house Grammer giver and giver



Problems do not have run-time since a problem ≠ the algorithm used to solve it. *Complexity classes are defined differently.* 

How do we compare problems? What if we just want to know if a problem is "computable".

### Algorithms, Problems and Languages ... oh my! I

#### Definition

- 1. An algorithm is a step-by-step way to solve a problem.
- 2. A problem is some question that we'd like answered given some input. It should be a decision problem of the form "Does a given input fulfill property X."
- 3. A Language is a set of strings. Given a alphabet, Σ a language is a subset of Σ\*
   A language is a formal realization of this problem. For problem X, the corresponding language is:

L = {w | w is the encoding of an input y to problem X and the answer to input y for a problem X is "YES" }
A decision problem X is "YES" is the string is in the language.

# Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma and output is separated by |.

That way the language has all possible combination of inputs with their outputs.

Machine accepts a x\*y=z if "x,y|z" is in L. Rejects otherwise.

Hence,  $x \cdot y$  is computable cause you can just search through the entire  $p \left[ x \cdot y = z \right]$ Mult problem

$$L = \begin{cases} w_1 & w_2 & w_3 \\ 1 & 2 & 3 & \cdots \\ 2 & 9 & 6 \\ 2 & 3 & 6 & 9 & 7 \end{cases}$$

$$P[x \cdot y = z] \text{ Mult problem}$$

$$Z = \{ \{ \{ \{ \}, \{ \} \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} \}$$

$$P[3.3] = \{ \{ \{ \}, \{ \} \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} \} \}$$

$$P[3.3] = \{ \{ \{ \}, \{ \} \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} \} \}$$

$$23$$

Hows does this help?

Limit. 
$$\vec{k}$$
 { "1,111", "2,112", ..., 5,4120",...}

Lesort.  $\vec{k}$  = { "1,3,2,4 | 1,2,3,4",..., 6, 10,916,9,10",

Hows does this help?

- · Question: How many C programs are there? Countable many
- · Question: How many languages are there? Uncountable many

#### Hows does this help?

- Question: How many C programs are there?
- Question: How many languages are there?
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

#### **Questions:**

#### Hows does this help?

- Question: How many C programs are there?
- Question: How many languages are there?
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

#### **Questions:**

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- Why should C programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

# Strings

# Alphabet

An alphabet is a finite set of symbols.

Examples of alphabets:

• 
$$\Sigma = \{0, 1\},$$

• 
$$\Sigma = \{a, b, c, \ldots, z\}$$
,

- · ASCII.
- UTF8.
- $\Sigma = \{\langle \text{moveforward} \rangle, \langle \text{moveback} \rangle, \langle \text{moveleft} \rangle, \langle \text{moveright} \rangle \}$

### **String Definition**

#### Definition

- 1. A string/word over  $\Sigma$  is a finite sequence of symbols over  $\Sigma$ . For example, '0101001', 'string', ' $\langle \text{moveback} \rangle \langle \text{rotate} 90 \rangle$ '
- 2.  $x \cdot y \equiv xy$  is the concatenation of two strings  $\frac{\partial}{\partial x} = \frac{\partial}{\partial x}$
- 3. The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3,  $|\epsilon| = 0$
- 4. For integer  $n \geq 0$ ,  $\mathfrak{D}$  is set of all strings over  $\Sigma$  of length n. ZN = 3.3.3...  $\Sigma^*$  is the set of all strings over  $\Sigma$ .
- 5.  $\Sigma^*$  set of all strings of all lengths including empty string.

Question: 
$$\{'a', 'c'\}^* = \{\mathcal{E}, \sigma, c, aa, ac, ca, ce, i\}^* = \{0, i\}^* \cdot \{0,$$

### **Emptiness**

- $\epsilon$  is a string containing no symbols. It is not a set
- $\{\epsilon\}$  is a set containing one string: the empty string. It is a set, not a string.
- Ø is the empty set. It contains no strings.
  = §§

Question: What is 
$$\{\emptyset\}$$
 =  $\{\{\}, \}$ 

### Concatenation and properties

- If x and y are strings then xy denotes their concatenation.
- · Concatenation defined recursively:
  - xy = y if  $x = \epsilon$
  - xy = a(wy) if x = aw
- xy sometimes written as  $x \cdot y$ .
- concatenation is associative: (uv)w = u(vw) hence write  $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The *identity* element is the empty string  $\epsilon$ :

$$\epsilon U = U \epsilon = U$$
.

### Substrings, prefixes, Suffixes

### Definition

v is substring of  $w \iff$  there exist strings x, y such that W = XVV.

- If  $x = \epsilon$  then v is a prefix of w
- If  $y = \epsilon$  then v is a suffix of w

Substring
subst

### Subsequence

A subsequence of a string w[1...n] is either a subsequence of w[2...n] or w[1] followed by a subsequence of w[2...n].

Example kapa is a supsequence of knapsack 111 1 kapa

### Subsequence

A subsequence of a string w[1...n] is either a subsequence of w[2...n] or w[1] followed by a subsequence of w[2...n].

### Example

kapa is a supsequence of knapsack

Question: How many sub-sequences are there in a string

$$|W| = 5$$
? = 32 = 2 <sup>wl</sup> Sacks

if there are no repeating characters

# String exponent

### Definition

If w is a string then  $w^n$  is defined inductively as follows:

$$w^n = \epsilon \text{ if } n = 0$$
  
 $w^n = ww^{n-1} \text{ if } n > 0$ 

Question: 
$$(blah)^3 = blah blah blah$$

### **Set Concatenation**

### Definition

Given two sets X and Y of strings (over some common alphabet  $\Sigma$ ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\} \tag{1}$$

Question: 
$$X = \{fido, rover, spot\}, Y = \{fluffy, tabby\} \implies XY = \{fidofluffy, fidofloby, fidofloby,$$

### $\Sigma^*$ and languages

### Definition

1.  $\Sigma^n$  is the set of all strings of length n. Defined inductively:

$$\Sigma^n = {\epsilon}$$
 if  $n = 0$   
 $\Sigma^n = \Sigma \Sigma^{n-1}$  if  $n > 0$ 

- 2.  $\Sigma^* = \bigcup_{n>0} \Sigma^n$  is the set of all finite length strings
- 3.  $\Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$  is the set of non-empty strings.  $\mathcal{E}^0 = \{ \mathcal{E}_{\mathcal{F}}^{\mathcal{F}} \}$

excludes 
$$2^0 = \{\xi\}$$

#### Definition

A language L is a set of strings over  $\Sigma$ . In other words  $L \subseteq \Sigma^*$ .

**Question**: Does  $\Sigma^*$  have strings of infinite length?  $\mathcal{D}_{\mathcal{O}}$ 

# Rapid-fire questions -strings

Answer the following questions taking  $\Sigma = \{0, 1\}$ .

- 1. What is  $\Sigma^0$ ?  $= \{\epsilon\}$
- 2. How many elements are there in  $\Sigma^n$ ? =  $Z^n$
- 3. If |u| = 2 and |v| = 3 then what is  $|u \cdot v|$ ? = 5
- 4. Let u be an arbitrary string in  $\Sigma^*$ . What is  $\epsilon u$ ? What is  $u\epsilon$ ? =  $\smile$

# Induction on strings

## Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

### Definition

The reverse  $w^R$  of a string w is defined as follows:

- $W^R = \epsilon$  if  $W = \epsilon$
- $w^R = x^R a$  if w = ax for some  $a \in \Sigma$  and string x



# Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

### Definition

The reverse  $w^R$  of a string w is defined as follows:

- $W^R = \epsilon$  if  $W = \epsilon$
- $w^R = x^R a$  if w = ax for some  $a \in \Sigma$  and string x

#### Theorem

Prove that for any strings  $u, v \in \Sigma^*$ ,  $(uv)^R = v^R u^R$ .

Example:  $(dog \cdot cat)^R = (cat)^R \cdot (dog)^R = tacgod$ .

# Principle of mathematical induction

Induction is a way to prove statements of the form  $\forall n \geq 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that  $\sum_{i=0}^{n} i = n(n+1)/2$  for all n.

Induction template:

- Base case: Prove P(0)
- Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any n ≤ k.
  Induction Step: Prove that P(n) holds, for n = k + 1.

### Structured induction

- Unlike simple cases we are working with...
- ...induction proofs also work for more complicated "structures".
- Such as strings, tuples of strings, graphs etc.
- See class notes on induction for details.

# Proving the theorem

#### Theorem

Prove that for any strings  $u, v \in \Sigma^*$ ,  $(uv)^R = v^R u^R$ .

Proof: by induction.

On what?? |uv| = |u| + |v|?

|*u*|?

|V|?

What does it mean "induction on |u|"?

### By induction on |u|

#### Theorem

Prove that for any strings  $u, v \in \Sigma^*$ ,  $(uv)^R = v^R u^R$ .

Proof by induction on |u| means that we are proving the following.

**Base case:** Let u be an arbitrary string of length 0,  $u = \epsilon$  since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

## By induction on |u|

#### Theorem

Prove that for any strings  $u, v \in \Sigma^*$ ,  $(uv)^R = v^R u^R$ .

Proof by induction on |u| means that we are proving the following.

**Base case:** Let u be an arbitrary string of length 0.  $u = \epsilon$  since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

**Induction hypothesis:**  $\forall n \geq 0$ , for any string u of length n:

For all strings 
$$v \in \Sigma^*$$
,  $(uv)^R = v^R u^R$ .

## By induction on |u|

#### Theorem

Prove that for any strings  $u, v \in \Sigma^*$ ,  $(uv)^R = v^R u^R$ .

Proof by induction on |u| means that we are proving the following.

**Base case:** Let u be an arbitrary string of length 0.  $u = \epsilon$  since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

**Induction hypothesis:**  $\forall n \geq 0$ , for any string u of length n:

For all strings  $v \in \Sigma^*$ ,  $(uv)^R = v^R u^R$ .

No assumption about v, hence statement holds for all  $v \in \Sigma^*$ .

# Inductive step

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and  $a \in \Sigma$ .
- Then

# Inductive step

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and  $a \in \Sigma$ .
- Then

$$(uv)^R =$$

## Inductive step

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.</li>
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and  $a \in \Sigma$ .
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

# Another example!

Theorem Prove that for any strings x and y, |xy| = |x| + |y|-Base Case: Assume 121=0, x=E & 14=18=0 by definition therefore 1x1+1y1=00/1y1=18y1=1y1 - Inductive Hypothesia (Strong induction) - Inductive Case Suppose for n >0, It holds 1×1≤n, kil+1/1=1xyl - Inclustive step: need to prove that hypothesis holls for 121= 111 Suppose Ixl= n+1, good 1xlelyl= 1xyl Suppose x=aw for some a \( \int \), w \( \int \): 1+ |w| = \(\text{r}) xy = (~ ")y = ~ (uy) ue know lwyl = 121+141 by IH Tlauy 1 = 1+ lwyl by (1) = 1+ 101 + 141 by inductive hypothesis

= | = | - | - |

# Languages

# Languages

### Definition

A language L is a set of strings over  $\Sigma$ . In other words  $L \subseteq \Sigma^*$ .

### Languages

### Definition

A language L is a set of strings over  $\Sigma$ . In other words  $L \subseteq \Sigma^*$ .

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is  $AB = \{xy \mid x \in A, y \in B\}.$
- For languages A, B, their union is  $A \cup B$ , intersection is  $A \cap B$ , and difference is  $A \setminus B$  (also written as A B).
- For language  $A \subseteq \Sigma^*$  the complement of A is  $\bar{A} = \Sigma^* \setminus A$ .

### Exponentiation, Kleene star etc

### Definition

For a language  $L \subseteq \Sigma^*$  and  $n \in \mathbb{N}$ , define  $L^n$  inductively as follows.

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L \cdot (L^{n-1}) & \text{if } n > 0 \end{cases}$$

And define  $L^* = \bigcup_{n \geq 0} L^n$ , and  $L^+ = \bigcup_{n \geq 1} L^n$ 

## Rapid-Fire questions - Languages

### Problem

Consider languages over  $\Sigma = \{0,1\}$ .  $Z_{-}$  all strings of length O

- 1. What is  $0^{\circ}$ ? = §  $\epsilon$  §
- 2. If |L| = 2, then what is  $|L^4|$ ? = 16

- 5. What is  $\emptyset^+$ ,  $\{\epsilon\}^+$ ,  $\epsilon^+$ ?

4. For what L is L' jimile? 
$$= \{e\}$$
 or  $p$ 

5. What is  $\emptyset^+$ ,  $\{e\}^+$ ,  $e^+$ ?

$$= \{e^3\}^-$$

# Languages: easiest, easy, hard, really hard, really<sup>n</sup> hard

- · Regular languages.
  - Regular expressions.
  - DFA: Deterministic finite automata.
  - NFA: Non-deterministic finite automata.
  - · Languages that are not regular.
- Context free languages (stack).
- Turing machines: Decidable languages.
- TM Undecidable/unrecognizable languages (halting theorem).

