Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

CS/ECE-374: Lecture 4 - NFAs

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

February 04, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

Simplifying DFAs

0 0 0 1 1 1 01

Simplifying DFAs

0 0 0 1 1 1 01

What if we draw the above figure as:

Simplifying DFAs

0 0 0 1 1 1 01

What does this mean?

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not

deterministic.
01 0]

start do

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not

deterministic.
0,1

start do

But first.... what the heck is non-determinism?

Non-determinism in computing

Non-determinism is a special
property of algorithms.

An algorithm that is capable of

ta |<Ing mUI'tIpl'e States Deterministic Non-Deterministic
concurrently. Whenever it T i Y
5 o i v LN
reaches a choice, it takes both M iy /i\% :
¢ o o e
pathS. fn) f(n)
. o — reject
If there is a path for the string i l Z
L R

to be accepted by the machine, :
then the string is part of the
language.

NFA acceptance: Informal

0,1 0/

start do 1®0®1@

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

0,1 0/

start do 1®0®1@

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

NFA acceptance: Example

0,1 01

- 1s 010110 accepted?

NFA acceptance: Example

Symbol Read:

NFA acceptance: Example

0,1 01

- 1s 010110 accepted?

NFA acceptance: Example

01 0,1
0 1
start do ! M @

- 1s 010110 accepted?
- I1s 010 accepted?

NFA acceptance: Example

01 0,1
0 1
start do ! M @

- 1s 010110 accepted?
- I1s 010 accepted?
- 1s 101 accepted?

NFA acceptance: Example

01 0,1
0 1
start do ! M @

- 1s 010110 accepted?
- I1s 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

NFA acceptance: Example

01 0,1
0 1
start do ! M @

- 1s 010110 accepted?

- I1s 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

- What is the language accepted by N?

NFA acceptance: Example

01 0,1
0 1
start do ! M @

- 1s 010110 accepted?

- I1s 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

- What is the language accepted by N?

NFA acceptance: Example

01 0,1

start do 1®0@1@

- 1s 010110 accepted?

- I1s 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,

- ¥ is a finite set called the input alphabet,

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where

- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

10

Reminder: Power set

Q: a set. Power set of Qis: P(Q) =22 = {X | X C Q} is set of all
subsets of Q.

Example
Q={1,2,3,4}

{1,2,3,4},
{2,3,4},{1,3,4},{1,2,4},{1,2,3},
P(Q) =9 {12}, {1,3},{1,4} ,{2,3} . {2,4} {3, 4},
{1}, {2}, {3} {4},

{}

n

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx X U{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

12

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx XU {e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Qs the start state,

12

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, L, 4,s,A) is a

five tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,

- §:Qx XU {e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Qs the start state,
- A C Qisthe set of accepting/final states.

d(q,a) fora e X U {e} is a subset of Q — a set of states.

12

071 0,1
3
.Q—
o)%
0 §=
S
13

Extending the transition function to
strings

Extending the transition function to strings

- NFAN = (Q,%,6,5,A)

14

Extending the transition function to strings

- NFAN =(Q, %, 4,s,A)
- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

14

Extending the transition function to strings

- NFAN =(Q, X%, 0,5,A)

- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

- Want transition function §* : Q x ¥* — P(Q)

14

Extending the transition function to strings

- NFAN =(Q, X%, 0,5,A)

- (g, a): set of states that N can go to from g on reading
aecXxU{e}.

- Want transition function §* : Q x ¥* — P(Q)

- 6*(g,w): set of states reachable on input w starting in
state q.

14

Extending the transition function to strings

Definition
For NFAN = (Q, %, 9,s,A) and g € Q the ereach(q) is the set of

all states that g can reach using only e-transitions.

OO,

(=0

15

Extending the transition function to strings

Definition
For NFAN = (Q, %, 9,s,A) and g € Q the ereach(q) is the set of

all states that g can reach using only e-transitions.

OO,

1,0 &
&
1
Definition

For X C Q: ereach(X) = (U,ex ereach(x).

0==0
1

15

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ©* — P(Q):

- ifw=¢, §*(q,w) = ereach(q)

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ©* — P(Q):

- ifw=¢, §*(q,w) = ereach(q)
- ifw=awhereaeXx:

6*(q, a) = ereach (U 5(p,a))
(@)

p€ereach

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ©* — P(Q):

- ifw=¢, §*(q,w) = ereach(q)
- ifw=awhereaeX:
6*(q, a) = ereach U d(p.a)
peereach(q)

cifw = ax;

5*(q,w) = ereach U U o (rx)
peereach(q) \reo*(p,a)

Transition for strings: w = ax

5*(q,w) = ereach U U (0
pecereach(q) \ redé*(p,a)

- R=ereach(q) =

5*(q,w ereach(U U o)
p,a)

pPER red*(

- N= U d*(p, a): All the states reachable from g with the

per
letter a.

- §*(q,w) = ereach <U 6*(r,x)>

reN

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 6% (s, w) NA # 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X, 4,s,A) is

{wex"|5(s,w)NA#0D}.

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 6% (s, w) NA # 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X, 4,s,A) is

{wex"|5(s,w)NA#0D}.

Important: Formal definition of the language of NFA above
uses 6* and not 4. As such, one does not need to include
e-transitions closure when specifying §, since §* takes care of

that.

What is:

- 0*(s,€) =

19

19

What is:

. 5*(5,6) _
- 6%(s,0)
- 6*(b,0)

19

What is:

- 0%(s,€)

- 6%(s,0)
- 6*(b,0)

- §*(b,00) =

19

Why non-determinism?

- Non-determinism adds power to the model; richer
programming language and hence (much) easier to
“design” programs

- Fundamental in theory to prove many theorems

- Very important in practice directly and indirectly

- Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly.

20

Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.

- NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

- Easy proofs of some closure properties

21

Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1

22

Strings that represent valid C comments.

Examples:
* Comment 1 *\
\\Comment 2

23

L5 = {bitstrings that have a 1 three positions from the end}

2%

A simple transformation

Theorem .
For every NFA N there is another NFA N" such that L(N) = L(N")

and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

25

A simple transformation

Theorem .
For every NFA N there is another NFA N" such that L(N) = L(N")

and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA’'s?

25

A simple transformation

Hint: Consider the L = 01+ 10.

26

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

- union

- intersection

- concatenation
- Kleene star

- complement

27

Closure under union

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(N1) U L(N2).

28

Closure under union

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(N1) U L(N2).

(ClNC)

©® ~ O

28

Closure under concatenation

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(Ny)+L(Np).

29

Closure under concatenation

Theorem '
For any two NFAs Ny and N, there is a NFA N such that

L(N) = L(Ny)+ L(N).

©® ~ 0] @ ~ O

29

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

® = @

30

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

31

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

Does not work! Why?

31

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(N4))*.

32

NFAs capture Regular Languages

(e+0)(1+10)"

—s |(e+0) (1+10)*

—> — L(1+10) !

33

7110
N

N

—>—> [(1+10) .

>,_>

>

€
_
_0

<
<

Final NFA simplified slightly to reduce states

@:@L@‘/@l 6

Last thought

Do all NFAs have a corresponding DFA?
0,1

1

start do @

36

Do all NFAs have a corresponding DFA?
0,1

1 01

start do @

Yes but it likely won't be pretty.

	Non-deterministic finite automata (NFA) Introduction
	Formal definition of NFA
	Extending the transition function to strings
	Constructing NFAs
	Closure Properties of NFAs
	NFAs capture Regular Languages
	Last thought

