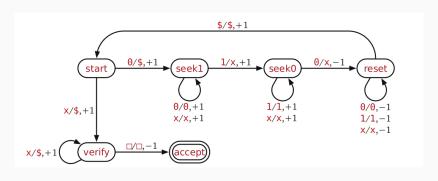
Pre-lecture brain teaser

You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma = \{0,1\}$. Please describe the language.



1

CS/ECE-374: Lecture 9 - Universal Turing Machines

Lecturer: Nickvash Kani

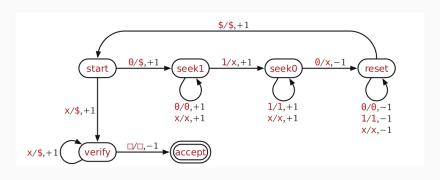
Chat moderator: Samir Khan

February 23, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma = \{0,1\}$. Please describe the language.



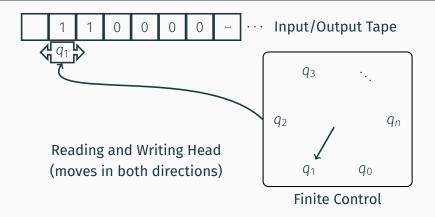
Pre-lecture brain teaser - code

Can simulate TM on turingmachine.io using the following code:

```
start state: start
table:
start:
   # Inductive case: start with the same symbol.
   0: {write: '$', R: seek1}
   # Base case: empty string.
    'x': {write: '$', R: verify}
seek1:
   [0.'x']: R
   1: {write: 'x'. R: seek0}
seek0:
   [1,'x']: R
   0: {write: 'x', L: reset}
reset:
   [0,1,'x']: L
    '$': {R: start}
verify:
   x: {write: '$', R}
    ' ': {L: accept}
accept:
```

Turing machine recap

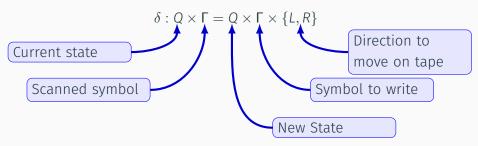
Turing machine



- · Input written on (infinite) one sided tape.
- · Special blank characters.
- Finite state control (similar to DFA).
- Ever step: Read character under head, write character out, move the head right or left (or stay).

Transition function

Transition Function



- $\delta(q,a)=(p,b,L)$ means from state q, on reading a:
 - go to state p
 - write b
 - · move head Left

Turing machine varients

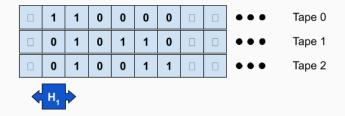
Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes
- Doubly-Infinite Tape
- Multiple heads
- Multiple heads and tapes

Multi-track Tapes

Suppose we have a TM with multiple tracks:



Is there an equivalent single-track TM?

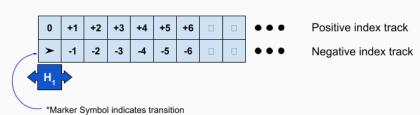
New transition function:

$$\delta: Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \rightarrow Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{-1, +1\}$$

Infinite Bi-directional Tape

Suppose we have a TM with multiple tracks:

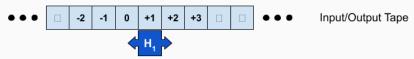
Is there an equivalent single-track TM?



Can model as multiple tapes.

Infinite Bi-directional Tape

Suppose we have a TM with multiple tracks:



Is there an equivalent single-track TM?

Marker Symbol tracks/indicates which index we look at

Or as single tape interleaved with positive and negative indexes.

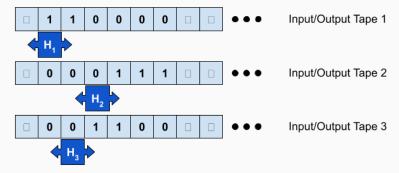
Multiple Read/Write Heads

Suppose we have a TM with multiple heads:

What does the transition function for the equivalent nominal TM look like?

Multiple Read/Write Heads

Suppose we have a TM with multiple heads and tracks:



What does the transition function for the equivalent nominal TM look like?

Universal Turing Machine

Special Purpose Machines?

We've seen that you need different DFAs for different languages.

We've seen that you need different TMs for different languages.

Early computers were no different.

Universal Turing Machine

A single TM M_u that can compute anything computable!

Takes as input:

- the description of some other TM M
- · data w for M to run on

Outputs:

• results of running M(w)

Coding of TMs

Show how to represent every TM as a natural number

Lemma

If L over alphabet $\{0,1\}$ is accepted by some TM M, then there is a one-tape TM M that accepts L, such that

- $\Gamma = \{0, 1, B\}$
- states numbered 1, . . . , k
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q₃ is a unique halt/reject state

So to represent a TM, we need only list its set of transitions - everything else is implicit by the above.

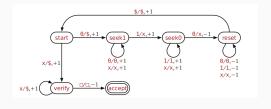
Encoding Alphabet

Consider the TM that recognizes the language

 $L = \{0^n 1^n 0^n | n \ge 0\}$ with the state diagram shown below:

Input encoding:

- $\cdot \langle 0 \rangle = 001$
- $\cdot \langle 1 \rangle = 010$
- $\langle \$ \rangle = 011$
- $\cdot \langle x \rangle = 100$
- $\cdot \langle \Box \rangle = 000$



```
Example: \langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]
(Putting · separators for the sake of legibility)
```

Encoding states

Consider the TM that recognizes the language $L = \{0^n 1^n 0^n | n > 0\}$ with the state diagram shown below:

State encoding:

$$\cdot \langle \text{start} \rangle = 001$$

•
$$\langle \text{seek1} \rangle = 010$$

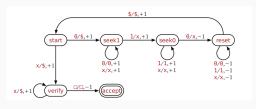
$$\cdot \langle \text{seek0} \rangle = 011$$

•
$$\langle \text{reset} \rangle = 100$$

•
$$\langle \text{verify} \rangle = 101$$

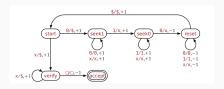
•
$$\langle accept \rangle = 110$$

•
$$\langle \text{reject} \rangle = 000$$



Encoding States and Alphabet

Consider the TM that recognizes the language $L = \{0^n 1^n 0^n | n \ge 0\}$ with the state diagram shown below:

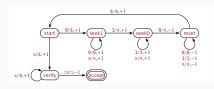


Now we need to encode a transition. Last thing we'll need is to encode the movement of the head whihc we'll describe as: [left, right] = [0, 1].

Example: How do we encode: $\delta(\text{reset},\$) = (\text{start},\$,\text{right})$

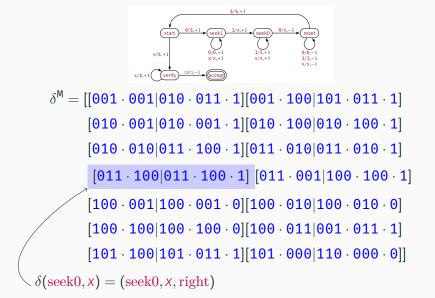
Answer: [100 ⋅ 011|001 ⋅ 011 ⋅ 1]

Encoding machine through transitions



```
\begin{split} \delta^{\mathsf{M}} &= [[001\cdot 001|010\cdot 011\cdot 1][001\cdot 100|101\cdot 011\cdot 1]\\ & [010\cdot 001|010\cdot 001\cdot 1][010\cdot 100|010\cdot 100\cdot 1]\\ & [010\cdot 010|011\cdot 100\cdot 1][011\cdot 010|011\cdot 010\cdot 1]\\ & [011\cdot 100|011\cdot 100\cdot 1][011\cdot 001|100\cdot 100\cdot 1]\\ & [100\cdot 001|100\cdot 001\cdot 0][100\cdot 010|100\cdot 010\cdot 0]\\ & [100\cdot 100|100\cdot 100\cdot 0][100\cdot 011|001\cdot 011\cdot 1]\\ & [101\cdot 100|101\cdot 011\cdot 1][101\cdot 000|110\cdot 000\cdot 0]] \end{split}
```

Encoding machine through transitions



Encoding initial state

Ok so now we've encoded the Turing machine (M) into a string, how do we make a machine $M_u(M, w)$ which accepts if M(w) accepts, and rejects if M(w) rejects?

Encoding initial state

Ok so now we've encoded the Turing machine (M) into a string, how do we make a machine $M_u(M, w)$ which accepts if M(w) accepts, and rejects if M(w) rejects?

```
Let's start with the encoding of w (let's say w = 001100): \langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]
```

Encoding initial state

Ok so now we've encoded the Turing machine (M) into a string, how do we make a machine $M_u(M, w)$ which accepts if M(w) accepts, and rejects if M(w) rejects?

```
Let's start with the encoding of w (let's say w = 001100): \langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]
```

Now let's add spaces next to each character so we can mark where M's head is:

```
[[000\cdot 001][000\cdot 001][000\cdot 010][000\cdot 010][000\cdot 001][000\cdot 001]]
```

Encoding states

Padding used to mark state.

In the beginning, $q = \langle \text{start} \rangle = 001$ so our machine tapes initial string is:

```
[\underline{[001}\cdot 001][000\cdot 001][000\cdot 010][000\cdot 010][000\cdot 001][000\cdot 001]]
```

Similarly intermediate configuration

```
M = \langle \text{state}, \text{tape string}, \text{head position} \rangle = (\text{start}, \$0x1x0, 3) would be marked as:
```

The universal Turing machine

UTM introduction

Now that we are able to encode Turing machines, we want to construct a Turing machine such that:

$$L(M_u) = \{\langle M \rangle \# w | M \text{ accepts } w\}$$

 M_u is a stored-program computer. It reads < M > and executes it on data w.

 M_u simulates the run of M on w.

Encodings

M: Turing machine

 $\langle M \rangle$: a string uniquely describing M (i.e., it is a number.

w: An input string.

 $\langle M, w \rangle$: A unique string encoding both M and input w.

 $L(M_u) = \{\langle M, w \rangle M \text{ is a TM } \text{ and } M \text{ accepts } w\}.$

M_u Operational concept

We assume without a loss of generality that our universal turing machine (M_u) has two tapes and two heads:

- Input tape: which stores the encoding of
 \$\langle M \rangle = \langle \text{state}, \text{tape input}, \text{head position} \rangle\$
- Machine tape: Encoding tape which stores M's encoding

General Idea: For any given configuration of M, our M_u will.

- Starting from leftmost of input tape, scan tape for first state which is not (reject)
- M_u scans machine tape for the transition function that matches the substring found in the input tape.
- Based on transition function, M_u writes the right half of this transition function into the current input tape cell.
- Based on head direction of the transition function, M_u moves the current state left or right

Let's start with the configuration: M = (start, \$\$x1x0, 3):

- Input-Tape = [[000 ⋅ 011][000 ⋅ 011][000 ⋅ 100][010 ⋅ 010][000 ⋅ 100][000 ⋅ 001]]
- Machine-Tape = $\delta^M = [[001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001|...]$

First M_u searchers for none reject state:

- Input-Tape = [[000 · 011][000 · 011][000 · 100][010 · 010][000 · 100][000 · 001]]
- Machine-Tape = $\delta^M = [001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001|...$

- · Input-Tape = [[000 · 011][000 · 011][000 · 100][010 · 010][000 · 100][000 · 001]]
- Machine-Tape = $\delta^{\rm M}$ = [[001 · 001|010 · 011 · 1][001 · 100|101 · 011 · 1][010 · 001|...

Then M_u searches for transition whose left side matches the input cell:

- Input-Tape = [[000 · 011][000 · 011][000 · 100][010 · 010][000 · 100][000 · 001]]
- Machine-Tape = $\delta^M = \dots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \dots$

- · Input-Tape = [[000 · 011][000 · 011][000 · 100][010 · 010][000 · 100][000 · 001]]
- Machine-Tape = $\delta^M = \dots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \dots$

Then M_u copies the right side of the transition function into the input tape:

- Input-Tape = [[000 · 011][000 · 011][000 · 100][011 · 100][000 · 100][000 · 001]]
- Machine-Tape = $\delta^M = \dots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \dots$

- · Input-Tape = [[000 · 011][000 · 011][000 · 100][011 · 100] [000 · 100][000 · 001]]
- Machine-Tape = δ^{M} = ...100 1][010 010|011 100 1][011 010|011 010 1]...

Then M_u move the state of the configuration according to the transition function:

- · Input-Tape = [[000 · 011][000 · 100][000 · 100][011 · 100][000 · 001]]
- Machine-Tape = $\delta^M = \dots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \dots$

- · Input-Tape = [[000 · 011][000 · 100][000 · 100][011 · 100][000 · 001]]
- Machine-Tape = $\delta^M = \dots 100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \dots$

Then we reset:

- Input-Tape = [[000 ⋅ 011][000 ⋅ 100][000 ⋅ 100][011 ⋅ 100][000 ⋅ 001]]

 Δ
- Machine-Tape = δ^{M} = [[001 001|010 011 1][001 100|101 011 1][010 001|...

What does this show?

- Every TM is encoded by a unique element of N (where N is a natural number)
- Convention: elements of N that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let <M> mean the number that encodes M. Conversely, let M_n be the TM with encoding n.

Big Idea: Every TM can be represent by a number (strings of 0's and 1's) and there exists a universal TM, M_u , that can simulate any other TM.

Complexity classes

