

Pre-lecture brain teaser

You have the following Turing machine diagram that accepts a
particular language whose alphabet ¥ = {0, 1}. Please
describe the language.

$/$,+1
0/$,+1 7~ N L/x,+1 0/x,—1
start > seekl r
X/$,4+1 0/0,+1 1/1,+1 0/0,-1
X/%,+1 X/%,+1 1/1,-1
v X/X,—1

x/$,+1 verify oo-1

CS/ECE-374: Lecture 9 - Universal Turing
Machines

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

February 23, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

You have the following Turing machine diagram that accepts a
particular language whose alphabet ¥ = {0, 1}. Please
describe the language.

$/$,+1
0/$,+1 7~ N L/x,+1 0/x,—1
start > seekl r
X/$,4+1 0/0,+1 1/1,+1 0/0,-1
X/%,+1 X/%,+1 1/1,-1
v X/X,—1

x/$,+1 verify oo-1

Pre-lecture brain teaser - code

Can simulate TM on turingmachine.io using the following
code:

start state: start
table:
start:
Inductive case: start with the same symbol.
0: {write: '$', R: seekl}
Base case: empty string.
'x': {write: '$', R: verify}

seekl:

[6,'x"]: R

1: {write: 'x', R: seek@}
seek0:

[1,'x"]: R

0: {write: 'x', L: reset}
reset:

[0,1,'x"'1: L

'$': {R: start}
verify:

x: {write: '$', R}

"'t {L: accept}
accept: 3

turingmachine.io

Turing machine recap

111]10jofo]o]=]| Input/OutputTape
an - ~
as
a2 dn
Reading and Writing Head /
(moves in both directions) e do

Finite Control

- Input written on (infinite) one sided tape.

- Special blank characters.

- Finite state control (similar to DFA).

- Ever step: Read character under head, write character out,
move the head right or left (or stay).

Transition function

Transition Function
§:QxT=QxT x{LR}

Direction to
(Current state]J \{ }
move on tape
[Scanned symbol Symbol to write }

New State]

d(g,a) = (p, b,L) means
from state g, on reading a:
- go to state p
- write b
- move head Left

Turing machine varients

Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes

- Doubly-Infinite Tape

- Multiple heads

- Multiple heads and tapes

Multi-track Tapes

Suppose we have a TM with multiple tracks:

110|000 | | |eee Tape 0
J(0(1|0|1|1]|0 |00 eee Tape 1
ol1/0|l0]1]1 eee Tape 2

Is there an equivalent single-track TM?

4| 7|0 2|3 (1)1 [LN Input/Output Tape

New transition function:
0:QxTMxTyxT3—=>QxTM xTxM3x{-1,+1} 7

Infinite Bi-directional Tape

Suppose we have a TM with multiple tracks:

'Y X 2] 1|0 |+1|+2|+3 oo e Input/Output Tape

@

Is there an equivalent single-track TM?

0 |+1|+2 (+3 | +4 | +5 | +6 o0 Positive index track

>|1|2|-3|4|-5]|-6 o0 0 Negative index track

<

*Marker Symbol indicates transition

Can model as multiple tapes.

Infinite Bi-directional Tape

Suppose we have a TM with multiple tracks:

'Y X 2] 1|0 |+1|+2|+3 oo e Input/Output Tape

D

Is there an equivalent single-track TM?

=(0|1|1|2|-2(3|-3|4|ece Input/Output Tape

“Marker Symbol tracks/indicates which index we look at

Or as single tape interleaved with positive and negative
indexes.

Multiple Read/Write Heads

Suppose we have a TM with multiple heads:

I{f1/1]0[0]|0]|0]|! _ eee Input/Output Tape

What does the transition function for the equivalent nominal
TM look like?

10

Multiple Read/Write Heads

Suppose we have a TM with multiple heads and tracks:

I{f1/1]0[0]|0]|0]|! _ eee Input/Output Tape 1

‘ o‘o‘o 1‘1‘1‘ ‘ ‘ooo Input/Output Tape 2

‘_‘0 0 1‘1‘0‘0““‘00. Input/Output Tape 3

What does the transition function for the equivalent nominal
TM look like?

n

Universal Turing Machine

Special Purpose Machines?

We've seen that you need different DFAs for different
languages.

We've seen that you need different TMs for different languages.

Early computers were no different.

12

Universal Turing Machine

A single TM M, that can compute anything computable!
Takes as input:

- the description of some other TM M

- data w for M to run on

Outputs:

- results of running M(w)

13

Show how to represent every TM as a natural number

Lemma]
If L over alphabet {0,1} is accepted by some TM M, then there

Is a one-tape TM M that accepts L, such that

- '={0,1,B}

- states numbered 1,...,k

g1 IS a unique start state

- @, Is a unique halt/accept state
- g3 is a unique halt/reject state

So to represent a TM, we need only list its set of transitions -
everything else is implicit by the above.
14

Encoding Alphabet

Consider the TM that recognizes the language
L ={0"1"0"|n > 0} with the state diagram shown below:

Input encoding:

- (0) = 001 -
<1> =010 start 28t o (e 2t o (aako %L ;reset)
($) =0m o iﬁi::ﬂ o
X/%,—1
C (X)) = wson((m)—22

Example: (001100) = [001-0071-010 - 010 - 001 - 001]
(Putting - separators for the sake of legibility)

15

Encoding states

Consider the TM that recognizes the language
L ={0"1"0"|n > 0} with the state diagram shown below:

State encoding:

(start) = 001 s

(seekl) = 010 YT oSS N ey SR TSI vy S ZES Y Gy

) = 0T mmomm
- (reset) = 100 . o1 o

(verify) = 101

(accept) = 110

(reject) = 000

Encoding States and Alphabet

Consider the TM that recognizes the language
L ={0"1"0"|n > 0} with the state diagram shown below:

Now we need to encode a transition. Last thing we'll need is to
encode the movement of the head whihc we'll describe as:
[left, right] = [0, 1].

Example: How do we encode: d(reset, $) = (start, $, right)

Answer: [100 - 011|001 - 011 - 1]

Encoding machine through transitions

M = [[001 -
(010 -
[010 -
[011 -
[100 -
[100 -
[101 -

001/010 -
001(010 -
010(011 -
100(011 -
001(100 -
100100 -
100(101 -

-1][001 -
-1][010 -
-1][011 -
-1][011 -
-0][100 -
- 0][100 -
-1][101 -

100|101 -
100(010 -
010(011 -
001(100 -
016(100 -
011/001 -
000[110 -

011 -
100 -
010 -
100 -
010 -
011 -
000 -

1]
1]
1]
1]
0]
1]
0]

Encoding machine through transitions

M= [[001- 001|016 - 011 - 1][001 - 100101 - 011 - 1]
(0160 - 001|016 - 001 - 1][016 - 100|010 - 100 - 1]
(010 - 010|011 - 100 - 1][011 - 016011 - 010 - 1]
[011 100|011 - 100 - 1] [011-001]160 - 100 - 1]
[100 - 001]100 - 001 - 0][100 - 010|100 - 010 -]
[100 - 100/100 - 100 - 0][100 - 011|001 - 011 - 1]
[101 100|101 -011 - 1][101 - 000|110 - 000 - 0]]

0 (seek0, x) = (seek0, x, right) o

Encoding initial state

Ok so now we've encoded the Turing machine (M) into a string,
how do we make a machine M, (M, w) which accepts if M(w)
accepts, and rejects if M(w) rejects?

20

Encoding initial state

Ok so now we've encoded the Turing machine (M) into a string,
how do we make a machine M, (M, w) which accepts if M(w)
accepts, and rejects if M(w) rejects?

Let's start with the encoding of w (let's say w = 001100):
(001100) = [001 - 001 010 - 010 - 001 - 001]

20

Encoding initial state

Ok so now we've encoded the Turing machine (M) into a string,
how do we make a machine M, (M, w) which accepts if M(w)
accepts, and rejects if M(w) rejects?

Let's start with the encoding of w (let's say w = 001100):
(001100) = [001 - 001 010 - 010 - 001 - 001]

Now let's add spaces next to each character so we can mark
where M’s head is:
[[000 - 001][000 - 001][000 - 010][000 - 010][000 - 001][000 - 001]]

20

Encoding states

Padding used to mark state.

In the beginning,g = (start) = 001 so our machine tapes initial
string is:
[[001 - 001][000 - 001][000 - 010][000 - 010][000 - 001][000 - 001]]

Similarly intermediate configuration

M = (state, tape string, head position) = (start, $0x1x0, 3)
would be marked as:

[[000 - 011] {000 - 001] [000 - 100] [010 - 010] [000 - 100] [000 - 001]]

reject $ reject 0 reject x reset 1 reject x reject 0

21

The universal Turing machine

UTM introduction

Now that we are able to encode Turing machines, we want to
construct a Turing machine such that:

L(My) = {{M)#w|M accepts W}

My is a stored-program computer. It reads < M > and executes
it on data w.

M, simulates the run of M on w.

22

M: Turing machine
(M): a string uniquely describing M (i.e,, it is a number.
w: An input string.

(M, w): A unique string encoding both M and input w.

L(My) = {{M,w)MisaTM and M accepts w}.

23

M, Operational concept

We assume without a loss of generality that our universal
turing machine (M) has two tapes and two heads:
- Input tape: which stores the encoding of
(M) = (state, tape input, head position)
- Machine tape:Encoding tape which stores M's encoding

General Idea: For any given configuration of M, our M, will.

- Starting from leftmost of input tape, scan tape for first
state which is not (reject)

- M, scans machine tape for the transition function that
matches the substring found in the input tape.

- Based on transition function, M, writes the right half of
this transition function into the current input tape cell.

- Based on head direction of the transition function, M,

2%
moves the current state left or right

Simulation example

Let's start with the configuration: M = (start, $$x1x0, 3):
+ Input-Tape =
[[000-011][000 - 011][000-100][010 - 010][000 - 100][000 - 001]]
A

- Machine-Tape = 6" =
[[007- 001|010 - 011 - 1][001 - 100[101 - 011 - 1][010 - 001] ...
A
First M, searchers for none reject state:

+ Input-Tape =
[[000-011][000-011][000-100][010 A 010]{000-100][000-001]]

- Machine-Tape = 6M =
[[007-001(010 - 011 - 1][001 - 100[101 - 011 - 1][010 - 001 .. .
A

25

Simulation example

+ Input-Tape =
[1000-011}{000-011}[000- 100][010 ; 010][000-100][000- 001]]
- Machine-Tape = 6M =

[[001-001/010 - 011 - 1][001 - 100101 - 011 - 1][010 - 001] .. .
AN

Then M, searches for transition whose left side matches the
input cell:

+ Input-Tape =
[[000-011][000-011][000-100][010 A 010][000-100][000- 001]]

- Machine-Tape = 6™ =
...100 - 1J[070 ; 010/011-100 - 1J[011- 010[011- 010 - 1] ...

26

Simulation example

+ Input-Tape =
[[000-011][000-011][000-100][010 A 010]{000-100][000 - 001]]

- Machine-Tape = 6M =
..100-1][010 . 010]011-100 - {011 - 010[011 - 070 1] ...

Then M, copies the right side of the transition function into
the input tape:

+ Input-Tape =
[[000-011][000-011][000-100][011-100] [000 - 100][000 - 001]]
A

- Machine-Tape = M =
...100 - 1][010 - 010|011 - 100 X 1][011- 010/011- 010 - 1] ...

27

Simulation example

+ Input-Tape =
[[000-011][000-011][000-100][011-100] [000 - 100][000 - 001]]
A

- Machine-Tape = 6" =
...100- 1][070 - 010/011- 100 - [011- 010011 - 010 -1]....

Then M, move the state of the configuration according to the
transition function:

+ Input-Tape =
[[000-011][000-011][000-100][000-100][011 A 100][000 - 001]]

- Machine-Tape = 6™ =
.00 - 1)[010 - 010|011 100 - 1][071-010[011- 010 - 1] ...

28

Simulation example

+ Input-Tape =
[[000-011][000-011][000-100][000 - 100][011 A 100][000-001]]

- Machine-Tape = 6" =
...100 - 1J[010 - 010[011 - 100 - 1][011 - 010]011 - 010 1]....

Then we reset:

+ Input-Tape =

[[000-011][000 - 011][000 - 100][000 - 100][011- 100][000 - 001]]
AN

- Machine-Tape = 6™ =
[[001 - 001|010 - 011 - 1][001 - 100[107 - 011 - 1][010 - 001| . ..
A

29

What does this show?

- Every TM is encoded by a unique element of N (where N is
a natural number)

- Convention: elements of N that do not correspond to any
TM encoding represent the “null TM” that accepts nothing.

- Thus, every TM is a number, and vice versa

- Let <M> mean the number that encodes M. Conversely, let
M, be the TM with encoding n.

Big Idea: Every TM can be represent by a number (strings of 0's
and 1's) and there exists a universal TM, M,, that can simulate

any other TM.

30

Complexity classes

’ Regular ‘

Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.

31

	Turing machine recap
	Turing machine varients
	Universal Turing Machine
	The universal Turing machine

