CS/ECE 374: Algorithms & Models of
Computation

Karatsuba’s Algorithm and
Linear Time Selection

Lecture 11

CS/ECE 374 1

WERVIREER

© Last lecture

©® How to think about recursion as a design paradigm
® How to analyze running time recurrences

© More complicated recursion in action

@ Fast multiplication (Karatsuba's Algorithm)
@ Linear Time Selection

CS/ECE 374 March 4, 2021 2/36

Recursion

Another way to think about it

Reduce a problem to smaller instances of the same problem.

(UIUC) CS/ECE 374 3 March 4, 2021 3/36

Reduction = Delegation J

@ Solve a problem using elementary operations + call a bunch of
subroutines

@ Subroutines = Black boxes

(UIUC) CS/ECE 374 4 March 4, 2021 4/36

Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

CS/ECE 374 March 4, 2021 5/36

Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1to n—1 do
for j=i+1 to n do
if (A[i] = A[D
return YES

return NO

(UIUC) CS/ECE 374 5 March 4, 2021 5/36

Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1to n—1 do
for j=i+1 to n do
if (A[i] = A[D
return YES

return NO

Running time:

CS/ECE 374 March 4, 2021 5/36

Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1to n—1 do
for j=i+1 to n do
if (A[i] = A[D
return YES

return NO

Running time: O(n?)

CS/ECE 374 March 4, 2021 5/36

Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
fori=1ton—1do
if (A[i] = A[i +1]) then
return YES
return NO

CS/ECE 374 March 4, 2021 6/36

Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
fori=1ton—1do
if (A[i] = A[i +1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

(UIUC) CS/ECE 374 6 March 4, 2021 6/36

Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is,
subroutines taken care of by the recursion fairy.

(UIUC) CS/ECE 374 7 March 4, 2021 7/36

Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is,
subroutines taken care of by the recursion fairy.

MERGESORT(A[1..n]):
ifn>1
m«|n/2]
MERGESORT(A[1..m])
MERGESORT(A[m + 1..n])
MERGE(A[1..n],m)

(UIUC) CS/ECE 374 7 March 4, 2021 7/36

Solving Recurrences

Two general methods:
© Guess and Verify

@ Recursion tree method: At every level of recursion, how much
non-recursive work you are doing.

CS/ECE 374 March 4, 2021 8/

Solving Recurrences

Two general methods:
© Guess and Verify

@ Recursion tree method: At every level of recursion, how much
non-recursive work you are doing.

@ Merge Sort: same amount of work at every level

CS/ECE 374 March 4, 2021 8/36

Solving Recurrences

Two general methods:

© Guess and Verify

@ Recursion tree method: At every level of recursion, how much
non-recursive work you are doing.
@ Merge Sort: same amount of work at every level
@ Increasing geometric series: count number of leaves. (Fast
multiplication)
© Decreasing geometric series: summable, first level dominates.
(Selection)

CS/ECE 374 March 4, 2021 8/36

Part |

Fast Multiplication

CS/ECE 374

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication

Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
x2718
25128
3141
21987
6282
8537238

CS/ECE 374

March 4, 2021

Time Analysis of Grade School Multiplication

@ Each partial product: ©(n)

@ Number of partial products: @(n)
@ Addition of partial products: ©(n?)
Q Total time: O(n?)

CS/ECE 374 March 4, 2021 11/36

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits
QO xX=Xp_1Xp_2...X0and Yy = Yp_1¥Yn—2.--Y0
QO x=Xp_1...%20...0+X;/2_1...X%0
Q@ x = 10"2x, + xg where x, = Xp_1 ... Xn/2 and
XR = Xn/2—l e e e X
Q Similarly y = 10"2y, + yg where y; = y,_1 .. - Yn/2 and
YR = Yn/2-1:--Y0

CS/ECE 374 March 4, 2021

1234 x 5678 = (100 x 12 4 34) x (100 x 56 + 78)
10000 x 12 x 56

+100 x (12 x 78 + 34 x 56)

+34 x 78

CS/ECE 374 March 4, 2021 13 /36

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

QO X =Xp_1Xp—2...Xand y = Yp_1¥Yn—2.-.-Y0

@ x = 10"2x; + xg where x; = X1 ... Xn/2 and
XR = Xn/2_1 oo X0

Q@ y=10"%y, + yr where y; = y,_1.. . Yn/2 and
YR = Yn/2—-1---Y0

Therefore

Xy = (10"/2xL + xR)(IO"/zyL + yRr)
= 10"x,y, 4+ 10"?(x yr + XrYL) + XrYR

CS/ECE 374 March 4, 2021

Time Analysis

xy = (10"2x; + xr)(10"2y, + yr)
= 10"x .y, + 10"/2 (XLyr + XrYL) + XRYR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0's to the right)

CS/ECE 374 March 4, 2021 15 /36

Time Analysis

xy = (10"2x; + xr)(10"2y, + yr)
= 10"x .y, + 10"/2 (XLyr + XrYL) + XRYR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0's to the right)

T(n) =4T(n/2) + O(n) T(1) = 0(1)

CS/ECE 374 March 4, 2021 15 /36

Time Analysis

xy = (10"2x; + xr)(10"2y, + yr)
= 10"x .y, + 10"/2 (XLyr + XrYL) + XRYR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0's to the right)
T(n) =4T(n/2) + O(n) T(1) = 0(Q)

T(n) = ©(n?). No better than grade school multiplication!

CS/ECE 374 March 4, 2021 15 /36

Recursion Tree

CS/ECE 374 March 4, 2021 16 /36

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a 4 bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

CS/ECE 374 March 4, 2021 17 /36

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a 4 bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

CS/ECE 374 March 4, 2021 17 /36

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a 4 bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a+ b)(c + d) — ac — bd

CS/ECE 374 March 4, 2021

Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

CS/ECE 374 8 March 4, 2021 18 /36

Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xg) (YL + Yr).

CS/ECE 374 March 4, 2021 18 /36

Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xg) (YL + Yr).

Time Analysis
Running time is given by

T(n) =3T(n/2) + O(n) T(1) =0(1)

which means

(UIUC) CS/ECE 374 18 March 4, 2021 18/36

Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xg) (YL + Yr).

Time Analysis
Running time is given by

T(n) =3T(n/2) + O(n) T(1) =0(1)

which means T(n) = O(n'°#23) = O(n'-%%%)

(UIuQ) CS/ECE 374 18 March 4, 2021 18 /36

Analyzing the Recurrences

@ Basic divide and conquer: T(n) =4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n?).

@ Saving a multiplication: T(n) = 3T(n/2) + O(n),
T(1) = 1. Claim: T(n) = O(n'*e:3)

CS/ECE 374 March 4, 2021 19 /36

Analyzing the Recurrences

@ Basic divide and conquer: T(n) =4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n?).
@ Saving a multiplication: T(n) = 3T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n'*e23)
Use recursion tree method:
@ In both cases, depth of recursion L = log n.

@ Work at depth i is 4'n/2" and 3'n/2' respectively: number of
children at depth i times the work at each child

© Total work is therefore n Z?:o 27 and n Z,{'=0(3/2)"
respectively.

(UIUC) CS/ECE 374 19 March 4, 2021 19/36

Recursion tree analysis

CS/ECE 374 March 4, 2021 20 /36

Part 1l

Selecting in Unsorted Lists

CS/ECE 374 2 March 4, 2021 21/36

Rank of element in an array

A: an unsorted array of n integers

Definition

For 1 < j < n, element of rank j is the j'th smallest element in A.

Unsorted array | 16| 14| 34|20 12| 5 | 3 [19| 11

Ranks 6

ot
©
(0]
e~
)
—
-3
w

11112114116 {1920 | 34

(2§

Sort of array 3

CS/ECE 374 March 4, 2021 22/36

Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = [(n+1)/2]

CS/ECE 374 March 4, 2021 23 /36

Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = [(n+1)/2]

Simplifying assumption for sake of notation: elements of A are
distinct

CS/ECE 374 March 4, 2021 23 /36

Algorithm |

@ Sort the elements in A
@ Pick jth element in sorted order

Time taken = O(nlog n)

CS/ECE 374 March 4, 2021 24 /36

Algorithm |

@ Sort the elements in A
@ Pick jth element in sorted order

Time taken = O(nlog n)

Do we need to sort? Is there an O(n) time algorithm?

CS/ECE 374 March 4, 2021 24 /36

Algorithm Il. One-armed Quick Sort

QuIckSoRT(A[1..n]):
if (n>1)
Choose a pivot element A[p]
r < PARTITION(A, p)
QuickSORT(A[1..r —1]) ((Recursel))
QuickSorT(A[r +1..n]) ((Recursel))

CS/ECE 374 March 4, 2021 25 /36

Algorithm Il. One-armed Quick Sort

QuICKSELECT(A[1..n], k):
ifn=1
return Af1]
else
Choose a pivot element A[p]
r « PARTITION(A[1..n], p)

ifk<r

return QUICKSELECT(A[1..r —1],k)
elseif k > r

return QUICKSELECT(A[r +1..n],k—r)
else

return A[r]

CS/ECE 374

Running Time Analysis

© Partitioning step: O(n) time to scan A

o
T(n) = ml?<x max(T(k —1), T(n — k)) + O(n)

In the worst case T(n) = T(n — 1) + O(n), which means
T(n) = O(n?). Happens if array is already sorted and pivot is
always first element.

CS/ECE 374 2 March 4, 2021 27 /36

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A

Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

CS/ECE 374 2 March 4, 2021 28 /36

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

CS/ECE 374 2 March 4, 2021 28 /36

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot?

CS/ECE 374 2 March 4, 2021 28 /36

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

CS/ECE 374 2 March 4, 2021 28 /36

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

CS/ECE 374 2 March 4, 2021 28 /36

Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

CS/ECE 374 2 March 4, 2021 28 /36

Divide and Conquer Approach

A game of medians

© Break input A into many subarrays: Ly, ... L.
© Find median m; in each subarray L;.
© Find the median x of the medians my, ..., my.

© Intuition: The median x should be close to being a good median
of all the numbers in A.

© Use x as pivot in previous algorithm.

CS/ECE 374 March 4, 2021 29 /36

Example

1|7 [3 | 42|174]310) 1 | 92| 87| 12] 19| 15

CS/ECE 374 March 4, 2021 30/36

1|7 [3 | 42|174]310) 1 | 92| 87| 12] 19| 15

CS/ECE 374 March 4, 2021 30/36

h 4, 2021 31/36

Marc

31

N
~
™
w
O
2
>
9]

c
i
=5

()

=
(G

(@)

c
.©
S

()
=

Median of median

Median of B is an approximate median of A. That is, if b is used as
a pivot to partition A, then |Agreater] < Tn/10.

CS/ECE 374 31 March 4, 2021 31/36

Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,...,L[n/57 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {b], by, ..., b(,,/5‘|}
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (IAless|) >_I)
return select (Aicss, J)
else
return select (Agreater, J — |Aress|)

CS/ECE 374 March 4, 2021 32/36

Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,..., L[5 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/s51}
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (|Aiess|) > 1)
return select (Ajess, J)
else
return select (Agreater> Jj — |Aiess|)

How do we find median of B?

CS/ECE 374 March 4, 2021 32/36

Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,..., L[5 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/s51}
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (|Aiess|) > 1)
return select (Ajess, J)
else
return select (Agreater> Jj — |Aiess|)

How do we find median of B? Recursively!

CS/ECE 374 March 4, 2021 32/36

Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,..., L[5 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
B = [by, by, ..., bry5]
b = select(B, [n/107)
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (|Aiess]) > J)
return select (Aicss, J)
else
return select (Agreater, J — |Aress|)

CS/ECE 374 March 4, 2021 33/36

Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater|)} + O(n)

CS/ECE 374 March 4, 2021 34 /36

Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater|)} + O(n)

From Lemma,

T(n) < T([n/51) + T([7n/107) + O(n)

and

T(n)=0(1) n<10

CS/ECE 374 March 4, 2021 34 /36

Recursion Tree

CS/ECE 374 March 4, 2021 35/36

Why 57 How about 37

9000000
@ OO0
OOO00O00000OUOU0U

CS/ECE 374 March 4, 2021 36 /36

