CS/ECE 374: Algorithms & Models of
Computation

Karatsuba’s Algorithm and
Linear Time Selection

Lecture 11
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WERVIREER

© Last lecture

©® How to think about recursion as a design paradigm
® How to analyze running time recurrences

© More complicated recursion in action

@ Fast multiplication (Karatsuba's Algorithm)
@ Linear Time Selection
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Recursion

Another way to think about it

Reduce a problem to smaller instances of the same problem.
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Reduction = Delegation J

@ Solve a problem using elementary operations + call a bunch of
subroutines

@ Subroutines = Black boxes
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Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?
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Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1to n—1 do
for j=i+1 to n do
if (A[i] = A[D
return YES

return NO
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Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1to n—1 do
for j=i+1 to n do
if (A[i] = A[D
return YES

return NO

Running time:
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Example of Reduction: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

DistinctElements(A[1. .n])
for i=1to n—1 do
for j=i+1 to n do
if (A[i] = A[D
return YES

return NO

Running time: O(n?)
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Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
fori=1ton—1do
if (A[i] = A[i +1]) then
return YES
return NO

CS/ECE 374 March 4, 2021 6/36



Reduction to Sorting

DistinctElements(A[1. .n])
Sort A
fori=1ton—1do
if (A[i] = A[i +1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box
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Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is,
subroutines taken care of by the recursion fairy.
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Recursion

It requires discipline to delegate

It is important to think of the recursive calls as black boxes, that is,
subroutines taken care of by the recursion fairy.

MERGESORT(A[1..n]):
ifn>1
m«|n/2]
MERGESORT(A[1..m])
MERGESORT(A[m + 1..n])
MERGE(A[1..n],m)
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Solving Recurrences

Two general methods:
© Guess and Verify

@ Recursion tree method: At every level of recursion, how much
non-recursive work you are doing.
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Solving Recurrences

Two general methods:
© Guess and Verify

@ Recursion tree method: At every level of recursion, how much
non-recursive work you are doing.

@ Merge Sort: same amount of work at every level
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Solving Recurrences

Two general methods:

© Guess and Verify

@ Recursion tree method: At every level of recursion, how much
non-recursive work you are doing.
@ Merge Sort: same amount of work at every level
@ Increasing geometric series: count number of leaves. (Fast
multiplication)
© Decreasing geometric series: summable, first level dominates.
(Selection)
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Part |

Fast Multiplication
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Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication

Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
x2718
25128
3141
21987
6282
8537238
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Time Analysis of Grade School Multiplication

@ Each partial product: ©(n)

@ Number of partial products: @(n)
@ Addition of partial products: ©(n?)
Q Total time: O(n?)
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits
QO xX=Xp_1Xp_2...X0and Yy = Yp_1¥Yn—2.--Y0
QO x=Xp_1...%20...0+X;/2_1...X%0
Q@ x = 10"2x, + xg where x, = Xp_1 ... Xn/2 and
XR = Xn/2—l e e e X
Q Similarly y = 10"2y, + yg where y; = y,_1 .. - Yn/2 and
YR = Yn/2-1:--Y0
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1234 x 5678 = (100 x 12 4 34) x (100 x 56 + 78)
10000 x 12 x 56

+100 x (12 x 78 + 34 x 56)

+34 x 78

CS/ECE 374 March 4, 2021 13 /36



Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

QO X =Xp_1Xp—2...Xand y = Yp_1¥Yn—2.-.-Y0

@ x = 10"2x; + xg where x; = X1 ... Xn/2 and
XR = Xn/2_1 oo X0

Q@ y=10"%y, + yr where y; = y,_1.. . Yn/2 and
YR = Yn/2—-1---Y0

Therefore

Xy = (10"/2xL + xR)(IO"/zyL + yRr)
= 10"x,y, 4+ 10"?(x yr + XrYL) + XrYR
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Time Analysis

xy = (10"2x; + xr)(10"2y, + yr)
= 10"x .y, + 10"/2 (XLyr + XrYL) + XRYR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0's to the right)

CS/ECE 374 March 4, 2021 15 /36



Time Analysis

xy = (10"2x; + xr)(10"2y, + yr)
= 10"x .y, + 10"/2 (XLyr + XrYL) + XRYR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0's to the right)

T(n) =4T(n/2) + O(n) T(1) = 0(1)
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Time Analysis

xy = (10"2x; + xr)(10"2y, + yr)
= 10"x .y, + 10"/2 (XLyr + XrYL) + XRYR

4 recursive multiplications of size n/2 plus 3 additions and left shifts
(adding enough 0's to the right)
T(n) =4T(n/2) + O(n) T(1) = 0(Q)

T(n) = ©(n?). No better than grade school multiplication!
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Recursion Tree
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A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a 4 bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i
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A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a 4 bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?
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A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a 4 bi) and (c + di)

(a+ bi)(c + di) = ac — bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a+ b)(c + d) — ac — bd
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Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

CS/ECE 374 8 March 4, 2021 18 /36



Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xg) (YL + Yr).
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Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xg) (YL + Yr).

Time Analysis
Running time is given by

T(n) =3T(n/2) + O(n) T(1) =0(1)

which means
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Improving the Running Time

xy = (10"%x, + xg) (10" %y, + yg)
= 10"x.y. + 10"/2 (xLyr + xrYL) + XrYR

Gauss trick: x yr + xryr = (x0 + xr)(YL + YR) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xg) (YL + Yr).

Time Analysis
Running time is given by

T(n) =3T(n/2) + O(n) T(1) =0(1)

which means T(n) = O(n'°#23) = O(n'-%%%)
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Analyzing the Recurrences

@ Basic divide and conquer: T(n) =4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n?).

@ Saving a multiplication: T(n) = 3T(n/2) + O(n),
T(1) = 1. Claim: T(n) = O(n'*e:3)
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Analyzing the Recurrences

@ Basic divide and conquer: T(n) =4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n?).
@ Saving a multiplication: T(n) = 3T(n/2) + O(n),
T(1) = 1. Claim: T(n) = ©(n'*e23)
Use recursion tree method:
@ In both cases, depth of recursion L = log n.

@ Work at depth i is 4'n/2" and 3'n/2' respectively: number of
children at depth i times the work at each child

© Total work is therefore n Z?:o 27 and n Z,{'=0(3/2)"
respectively.

(UIUC) CS/ECE 374 19 March 4, 2021 19/36



Recursion tree analysis
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Part 1l

Selecting in Unsorted Lists
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Rank of element in an array

A: an unsorted array of n integers

Definition

For 1 < j < n, element of rank j is the j'th smallest element in A.

Unsorted array | 16| 14| 34|20 12| 5 | 3 [ 19| 11

Ranks 6

ot
©
(0]
e~
)
—
-3
w

11112114116 {1920 | 34

(2§

Sort of array 3
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = [(n+1)/2]
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the jth smallest number in A (rank j number)

Median: j = [(n+1)/2]

Simplifying assumption for sake of notation: elements of A are
distinct
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Algorithm |

@ Sort the elements in A
@ Pick jth element in sorted order

Time taken = O(nlog n)
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Algorithm |

@ Sort the elements in A
@ Pick jth element in sorted order

Time taken = O(nlog n)

Do we need to sort? Is there an O(n) time algorithm?
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Algorithm Il. One-armed Quick Sort

QuIckSoRT(A[1..n]):
if (n>1)
Choose a pivot element A[p]
r < PARTITION(A, p)
QuickSORT(A[1..r —1])  ((Recursel))
QuickSorT(A[r +1..n])  ((Recursel))
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Algorithm Il. One-armed Quick Sort

QuICKSELECT(A[1..n], k):
ifn=1
return Af1]
else
Choose a pivot element A[p]
r « PARTITION(A[1..n], p)

ifk<r

return QUICKSELECT(A[1..r —1],k)
elseif k > r

return QUICKSELECT(A[r +1..n],k—r)
else

return A[r]
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Running Time Analysis

© Partitioning step: O(n) time to scan A

o
T(n) = ml?<x max(T(k —1), T(n — k)) + O(n)

In the worst case T(n) = T(n — 1) + O(n), which means
T(n) = O(n?). Happens if array is already sorted and pivot is
always first element.
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Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A

Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,
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Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!
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Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot?
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Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?
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Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.
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Suppose pivot is the £th smallest element where n/4 < £ < 3n/4.
That is pivot is approximately in the middle of A
Then n/4 < |Aiess|] < n/2 and n/2 < |Agreater| < 3n/4. If we
apply recursion,

T(n) < T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?
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Divide and Conquer Approach

A game of medians

© Break input A into many subarrays: Ly, ... L.
© Find median m; in each subarray L;.
© Find the median x of the medians my, ..., my.

© Intuition: The median x should be close to being a good median
of all the numbers in A.

© Use x as pivot in previous algorithm.
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Example

1|7 [3 | 42|174]310) 1 | 92| 87| 12] 19| 15
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Median of median

Median of B is an approximate median of A. That is, if b is used as
a pivot to partition A, then |Agreater] < Tn/10.
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Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,...,L[n/57 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {b], by, ..., b(,,/5‘|}
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (IAless|) >_I)
return select (Aicss, J)
else
return select (Agreater, J — |Aress|)
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Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,..., L[5 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/s51}
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (|Aiess|) > 1)
return select (Ajess, J)
else
return select (Agreater> Jj — |Aiess|)

How do we find median of B?
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Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,..., L[5 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
Find median b of B = {by, by,...,brn/s51}
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (|Aiess|) > 1)
return select (Ajess, J)
else
return select (Agreater> Jj — |Aiess|)

How do we find median of B? Recursively!
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Algorithm for Selection

A storm of medians

select(A, j):
Form lists Ly, Ly,..., L[5 where L; = {A[5i —4],..., A[5i]}
Find median b; of each L; using brute-force
B = [by, by, ..., bry5]
b = select(B, [n/107)
Partition A into Ajess and Agreater using b as pivot
if (|Ajess|) =j return b
else if (|Aiess]) > J)
return select (Aicss, J)
else
return select (Agreater, J — |Aress|)
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Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater|)} + O(n)
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Running time of deterministic median selection

A dance with recurrences

T(n) < T([n/5]) + max{ T (|Aiss|); T (|Agreater|)} + O(n)

From Lemma,

T(n) < T([n/51) + T([7n/107) + O(n)

and

T(n)=0(1) n<10
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Recursion Tree
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Why 57 How about 37

9000000
@ OO0
OOO00O00000OUOU0U
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