
CS/ECE 374: Algorithms & Models of

Computation

Bellman-Ford and Dynamic
Programming
Lecture 18

(UIUC) CS/ECE 374 1 April 1, 2021 1 / 36

Part I

No negative edges: Dijkstra

(UIUC) CS/ECE 374 2 April 1, 2021 2 / 36

Dijkstra’s Algorithm

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−X dist(s, u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + `(v , u)

)
Priority Queues to maintain dist values for faster running time

1 Using heaps and standard priority queues: O((m + n) log n)
2 Best-first-search

(UIUC) CS/ECE 374 3 April 1, 2021 3 / 36

Dijkstra’s Algorithm using Priority Queues

Q ← makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))

X ← ∅
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,
(
u,min

(
dist(s, u), dist(s, v) + `(v , u)

)))
.

Priority Queue operations:

1 O(n) insert operations

2 O(n) extractMin operations

3 O(m) decreaseKey operations

(UIUC) CS/ECE 374 4 April 1, 2021 4 / 36

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n +m) log n) time.

(UIUC) CS/ECE 374 5 April 1, 2021 5 / 36

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n +m) log n) time.

(UIUC) CS/ECE 374 5 April 1, 2021 5 / 36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time:

` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

(UIUC) CS/ECE 374 6 April 1, 2021 6 / 36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

(UIUC) CS/ECE 374 6 April 1, 2021 6 / 36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

(UIUC) CS/ECE 374 6 April 1, 2021 6 / 36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

(UIUC) CS/ECE 374 6 April 1, 2021 6 / 36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
1 extractMin, insert, delete, meld in O(log n) time

2 decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

3 Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m)
time.

2 Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

(UIUC) CS/ECE 374 6 April 1, 2021 6 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes
Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X
In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u)
d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes

Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X
In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u)
d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes
Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X

In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u)
d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes
Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X
In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u)
d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes
Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X
In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)

d ′(s, u) ≥ d(s, u)
d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes
Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X
In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u)

d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Key takeaways of Dijkstra

1 Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

The intermediate set X keeps the i − 1 closest nodes
Give us an evaluation order: d ′(s, u) only updated when v is
added to X , and u ∈ Adj(v) and u ∈ V − X
In particular, once a node is in X , d ′(s, u) no longer changes
as d ′(s, u) = d(s, u), and it is never updated again

2 How to recognize the i -th closest node?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u)
d ′(s, v) = minu∈V−X d ′(s, u) is the i -th closest node, and
d ′(s, v) = d(s, v)

(UIUC) CS/ECE 374 7 April 1, 2021 7 / 36

Part II

Negative Edges: Bellman-Ford

(UIUC) CS/ECE 374 8 April 1, 2021 8 / 36

What are the distances computed by Dijkstra’s

algorithm?

1

1

5
s

z

y

w
1

x −5

The distance as computed
by Dijkstra algorithm start-
ing from s:
(A) s = 0, x = 5, y = 1,

z = 0.
(B) s = 0, x = 1, y = 2,

z = 5.
(C) s = 0, x = 5, y = 1,

z = 2.
(D) IDK.

(UIUC) CS/ECE 374 9 April 1, 2021 9 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1

s

z

y

w
1

x −5

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

x −5

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

3

x −5

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

3

x −5
5

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

s

z

y

w
1

3

x −5
5

0

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

1

Shortest path

s

z

y

w
1

3

x −5
5

0

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1

1

5
s

z

y

w
1

x −5

1

1

5

1
2

1

Shortest path

s

z

y

w
1

3

x −5
5

0

False assumption: Dijkstra’s algorithm is based on the assumption
that if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk
then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for
non-negative edge lengths.

(UIUC) CS/ECE 374 10 April 1, 2021 10 / 36

Anything we can learn from Dijkstra?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u) still true.

if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk

for 1 ≤ i < k : s = v0 → v1 → v2 → . . .→ vi is a shortest
path from s to vi , i.e. subpath of a shortest path is still a
shortest path.

Not true: dist(s, vi) ≤ dist(s, vi+1), the intermediate set is
no longer X ; in fact, it can be anything

Solution: Update all edges |V | − 1 times!

(UIUC) CS/ECE 374 11 April 1, 2021 11 / 36

Anything we can learn from Dijkstra?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u) still true.

if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk

for 1 ≤ i < k : s = v0 → v1 → v2 → . . .→ vi is a shortest
path from s to vi , i.e. subpath of a shortest path is still a
shortest path.

Not true: dist(s, vi) ≤ dist(s, vi+1), the intermediate set is
no longer X ; in fact, it can be anything

Solution: Update all edges |V | − 1 times!

(UIUC) CS/ECE 374 11 April 1, 2021 11 / 36

Anything we can learn from Dijkstra?

d ′(s, u) = min
(
d ′(s, u), dist(s, v) + `(v , u)

)
d ′(s, u) ≥ d(s, u) still true.

if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk

for 1 ≤ i < k : s = v0 → v1 → v2 → . . .→ vi is a shortest
path from s to vi , i.e. subpath of a shortest path is still a
shortest path.

Not true: dist(s, vi) ≤ dist(s, vi+1), the intermediate set is
no longer X ; in fact, it can be anything

Solution: Update all edges |V | − 1 times!

(UIUC) CS/ECE 374 11 April 1, 2021 11 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ In(v) do
d(v) = min{d(v), d(u) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(mn)

(UIUC) CS/ECE 374 12 April 1, 2021 12 / 36

Part III

Bellman-Ford and DP

(UIUC) CS/ECE 374 13 April 1, 2021 13 / 36

Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

Sub-problem idea: paths of fewer hops/edges

(UIUC) CS/ECE 374 14 April 1, 2021 14 / 36

Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

Sub-problem idea: paths of fewer hops/edges

(UIUC) CS/ECE 374 14 April 1, 2021 14 / 36

Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

Sub-problem idea: paths of fewer hops/edges

(UIUC) CS/ECE 374 14 April 1, 2021 14 / 36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v , k): shortest path length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1).

Recursion for d(v , k):

d(v , k) = min

{
minu∈In(V)(d(u, k − 1) + `(u, v)).
d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.

(UIUC) CS/ECE 374 15 April 1, 2021 15 / 36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v , k): shortest path length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1).

Recursion for d(v , k):

d(v , k) = min

{
minu∈In(V)(d(u, k − 1) + `(u, v)).
d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.

(UIUC) CS/ECE 374 15 April 1, 2021 15 / 36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v , k): shortest path length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1).

Recursion for d(v , k):

d(v , k) = min

{
minu∈In(V)(d(u, k − 1) + `(u, v)).
d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.

(UIUC) CS/ECE 374 15 April 1, 2021 15 / 36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v , k): shortest path length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1).

Recursion for d(v , k):

d(v , k) = min

{
minu∈In(V)(d(u, k − 1) + `(u, v)).
d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.

(UIUC) CS/ECE 374 15 April 1, 2021 15 / 36

Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8

−3

−8 2

1

(UIUC) CS/ECE 374 16 April 1, 2021 16 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn) Space: O(n2)
Space can be reduced to O(n).

(UIUC) CS/ECE 374 17 April 1, 2021 17 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time:

O(mn) Space: O(n2)
Space can be reduced to O(n).

(UIUC) CS/ECE 374 17 April 1, 2021 17 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn)

Space: O(n2)
Space can be reduced to O(n).

(UIUC) CS/ECE 374 17 April 1, 2021 17 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn) Space:

O(n2)
Space can be reduced to O(n).

(UIUC) CS/ECE 374 17 April 1, 2021 17 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn) Space: O(n2)

Space can be reduced to O(n).

(UIUC) CS/ECE 374 17 April 1, 2021 17 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ In(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn) Space: O(n2)
Space can be reduced to O(n).

(UIUC) CS/ECE 374 17 April 1, 2021 17 / 36

Bellman-Ford Algorithm

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ In(v) do
d(v) = min{d(v), d(u) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(mn) Space: O(n)

(UIUC) CS/ECE 374 18 April 1, 2021 18 / 36

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

(UIUC) CS/ECE 374 19 April 1, 2021 19 / 36

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

(UIUC) CS/ECE 374 19 April 1, 2021 19 / 36

Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose

1 G has a negative length cycle C , and

2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

−∞

(UIUC) CS/ECE 374 20 April 1, 2021 20 / 36

Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose

1 G has a negative length cycle C , and

2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
−∞

(UIUC) CS/ECE 374 20 April 1, 2021 20 / 36

Bellman-Ford: Negative Cycle Detection

Check if distances change in iteration n.

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ In(v) do
d(v) = min{d(v), d(u) + `(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ In(v) do

if (d(v) > d(u) + `(u, v))
Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)

(UIUC) CS/ECE 374 21 April 1, 2021 21 / 36

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run Bellman-Ford |V | times, once from each node u?

(UIUC) CS/ECE 374 22 April 1, 2021 22 / 36

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run Bellman-Ford |V | times, once from each node u?

(UIUC) CS/ECE 374 22 April 1, 2021 22 / 36

Negative Cycle Detection

1 Add a new node s ′ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s ′ will find a negative length
cycle if there is one. Exercise: why does this work?

2 Negative cycle detection can be done with one Bellman-Ford
invocation.

(UIUC) CS/ECE 374 23 April 1, 2021 23 / 36

	No negative edges: Dijkstra
	Negative Edges: Bellman-Ford
	Bellman-Ford and DP
	Shortest Paths in DAGs
	All Pairs Shortest Paths

